10. 11 Gaussiam Elimination Method

Matrices are useful tools in solving system of linear equations. In this section we consider one of the best-known matrix method, the Gaussian elimination method.

A matrix can be created from a system of linear equations.
Consider the system of linear equations

$$
\begin{aligned}
3 x+2 y-3 z & =-1 \\
x+3 y+2 z & =1 \\
x+y-2 z & =-3
\end{aligned}
$$

Using only the coefficients and constants of this system, we can write the matrices:

$$
A=\left[\begin{array}{ccc}
3 & 2 & -3 \\
1 & 3 & 2 \\
1 & 1 & -3
\end{array}\right], \quad B=\left[\begin{array}{c}
-1 \\
1 \\
-3
\end{array}\right] \text {, and }[A: B]=\left[\begin{array}{ccc}
3 & 2 & -3:-1 \\
1 & 3 & 2 \vdots \\
1 & 1 & -3:-3
\end{array}\right]
$$

A is called coefficient matrix of the system; B is called the constant matrix of the system; $[A: B]$ is called augmented matrix of the system.

Gaussian Elimination Method

1. Write the augmented matrix $[A \vdots B]$.
2. Use any of row operations:
a. Interchange two rows.
b. Multiply (or divide) every element in a row by the same nonzero number.
c. Add (or subtract) a multiple of one row to (or from) another row.

To $[A \vdots B]$ in echelon form; all elements on the main diagonal are 1 's and below it are 0 's.
3. Use back substitution on the system that has the augmented obtained in step 2.

Example \#1 Use Gaussian elimination to solve the following system
a)

$$
\begin{aligned}
3 x+2 y-3 z & =-1 \\
x+3 y+2 z & =1 \\
x+y-2 z & =-3
\end{aligned}
$$

$$
\text { Ans. }(3,-2,2)
$$

b)

$$
2 x+5 y+2 z=-1
$$

$$
x+2 y-3 z=5
$$

$$
5 x+12 y+z=10
$$

c)

$$
\begin{aligned}
3 x-5 y+2 z & =4 \\
x-3 y+2 z & =4 \\
5 x-11 y+6 z & =12
\end{aligned}
$$

