Shehadeh, Y. Sec10.1

10.1 Gaussian Elimination Method

Matrices are useful tools in solving system of linear equations. In this section we consider one of the best-known matrix method, the **Gaussian elimination method**.

A matrix can be created from a system of linear equations. Consider the system of linear equations

$$3x + 2y - 3z = -1$$
$$x + 3y + 2z = 1$$
$$x + y - 2z = -3$$

Using only the coefficients and constants of this system, we can write the matrices:

$$A = \begin{bmatrix} 3 & 2 & -3 \\ 1 & 3 & 2 \\ 1 & 1 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, and \begin{bmatrix} A \vdots B \end{bmatrix} = \begin{bmatrix} 3 & 2 & -3 \vdots -1 \\ 1 & 3 & 2 \vdots & 1 \\ 1 & 1 & -3 \vdots -3 \end{bmatrix}$$

A is called coefficient matrix of the system; B is called the constant matrix of the system; [A:B] is called augmented matrix of the system.

Gaussian Elimination Method

- 1. Write the augmented matrix [A:B].
- 2. Use any of **row operations**:
 - a. Interchange two rows.
 - b. Multiply (or divide) every element in a row by the same nonzero number.
 - c. Add (or subtract) a multiple of one row to (or from) another row.

To [A:B] in echelon form; all elements on the main diagonal are 1's and below it are 0's. 3. Use back substitution on the system that has the augmented obtained in step 2.

Example #1 Use Gaussian elimination to solve the following system

a)	
3x + 2y - 3z = -1	
x + 3y + 2z = 1	Ans. (3, -2, 2)
x + y - 2z = -3	
b)	
2x + 5y + 2z = -1	
x + 2y - 3z = 5	Ans. no solution
5x + 12y + z = 10	
c)	
3x - 5y + 2z = 4	
x - 3y + 2z = 4	Ans. (c-2, c-2, c)
5x - 11y + 6z = 12	