6.9 Logarithmic Function from the integral point of view

691 DEFIMITION.  The natwral logarithm of x is denoted by In x and is defined by

the integral
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6.9.2 THEOREM. Foranypositive numbers a and ¢ and any rnational numberr:
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Functions defined by integrals

Elementary Function; they include polynomial, rational,
exponential, power, logarithmic, and trigonometric functions, and
all other that can be obtained from these by addition, subtraction,
multiplication, division, root and composition.

Other are not elementary.

The initial value problem
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has a solution of the form y (x) =y + [ f (t)dt
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Exercise 11a, 17, 34



