10.8 Maclaurin and Taylor Series; Power Series

DEFINITION. If f has derivatives of all orders at x_0 , then we call the series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \dots$$
 (1)

the Taylor series for f about $x = x_0$. In the special case where $x_0 = 0$, this series becomes

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(k)}(0)}{k!} x^k + \dots$$
 (2)

in which case we call it the Maclaurin series for f.

For example Maclaurin series for sinx is $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2^{k+1}}}{(2k+1)!}$

Power Series in $x - x_0$

THEOREM. For a power series $\sum c_k(x-x_0)^k$, exactly one of the following statements is true:

- (a) The series converges only for $x = x_0$.
- (b) The series converges absolutely (and hence converges) for all real values of x.
- (c) The series converges absolutely (and hence converges) for all x in some finite open interval $(x_0 R, x_0 + R)$ and diverges if $x < x_0 R$ or $x > x_0 + R$. At either of the values $x = x_0 R$ or $x = x_0 + R$, the series may converge absolutely, converge conditionally, or diverge, depending on the particular series.

Example 1

Find the interval of convergence and radius of convergence of the following power series.

$$a) \sum_{k=0}^{\infty} \frac{x^k}{5^k} \qquad b) \sum_{k=0}^{\infty} \frac{x^k}{k!} \qquad c) \sum_{k=1}^{\infty} \frac{x^k}{\sqrt{k}}$$

$$d) \sum_{k=0}^{\infty} (-1)^k \frac{(x-3)^k}{k+1} \qquad e) \sum_{k=0}^{\infty} (-1)^k \frac{k^k (x-3)^k}{k+1}$$

Bessel Functions

$$J_0(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{2^{2k} (k!)^2}$$
$$J_1(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2^{2k+1} (k!) (k+1)!}$$

