10.8 Maclaurin and Taylor Series; Power Series

DEFINITION. If f has derivatives of all orders at x;, then we call the series
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the Tavlor series for fabout x =x,. In the special case where xg = 0, this series becomes
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in which case we call it the Maclaurin series for f.
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For example Maclaurin series for sinx is é( ) (2k +1)!




Power Series in X-X,

THEOREM. For a power series 3 cp(x — x)¥, exactly one of the following
statements is true:

(@) The series converges only for x = x.
(b) The series converges absolutely (and hence converges) for all real values of x.

(c) The series converges absolutely (and hence converges) for all x in some finite open
interval (x, — R, xo+ R) and diverges if x < xp,— Rorx = x3+ R. At either of the
values x = x; — R or x = x3 + R, the series may converge absolutely, converge
conditionally, or diverge, depending on the particular series.
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Example 1

Find the interval of convergence and radius of convergence of
the following power series.
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Bessel Functions

Jo(X) = Z( 1)"

3,00 =Y (D"

k=0

k=0

¥

22k (k')

\kﬁ

27T (k1) (k +1)!
-
TANT AT .
W v f\gﬂmh




