

Basic Business Statistics 11th Edition

Chapter 14

Introduction to Multiple Regression

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-1

Learning Objectives

In this chapter, you learn:

- How to develop a multiple regression model
- How to interpret the regression coefficients
- How to determine which independent variables to include in the regression model
- How to determine which independent variables are more important in predicting a dependent variable
- How to use categorical variables in a regression model
- How to predict a categorical dependent variable using logistic regression

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X_i)

Multiple Regression Model with k Independent Variables:

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-3

Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

Multiple regression equation with k independent variables:

In this chapter we will use Excel or Minitab to obtain the regression slope coefficients and other regression summary measures.

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Coefficient of Multiple Determination

 Reports the proportion of total variation in Y explained by all X variables taken together

$$r^2 = \frac{SSR}{SST} = \frac{regressionsum of squares}{total sum of squares}$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Adjusted r²

- r² never decreases when a new X variable is added to the model
 - This can be a disadvantage when comparing models
- What is the net effect of adding a new variable?
 - We lose a degree of freedom when a new X variable is added
 - Did the new X variable add enough explanatory power to offset the loss of one degree of freedom?

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Adjusted r²

(continued)

 Shows the proportion of variation in Y explained by all X variables adjusted for the number of X variables used

$$r_{adj}^2 = 1 - \left[(1 - r^2) \left(\frac{n-1}{n-k-1} \right) \right]$$

(where n = sample size, k = number of independent variables)

- Penalize excessive use of unimportant independent variables
- Smaller than r²
- Useful in comparing among models

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Adjusted r² in Minitab

The regression equation is

Sales = 307 - 25.0 Price + 74.1 Advertising

 Predictor
 Coef SE Coef
 T
 P

 Constant
 306.50
 114.30
 2.68
 0.020

 Price
 -24.98
 10.83
 -2.31
 0.040

 Advertising
 74.13
 25.97
 2.85
 0.014

S = 47.4634 R-Sq = 52.1% R-Sq(adj) = 44.2%

Analysis of Variance

Source DF SS MS F P Regression 2 29460 14730 6.54 0.012

Residual Error 12 27033 2253 Total 14 56493 $r_{\text{adj}}^2 = .44172$

44.2% of the variation in pie sales is explained by the variation in price and advertising, taking into account the sample size and number of independent variables

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-2

Is the Model Significant?

- F Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the X variables considered together and Y
- Use F-test statistic
- Hypotheses:

 H_0 : $\beta_1 = \beta_2 = \dots = \beta_k = 0$ (no linear relationship)

 H_1 : at least one $\beta_i \neq 0$ (at least one independent variable affects Y)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

F Test for Overall Significance

Test statistic:

$$F_{STAT} = \frac{MSR}{MSE} = \frac{\frac{SSR}{k}}{\frac{SSE}{n-k-1}}$$

where F_{STAT} has numerator d.f. = k and denominator d.f. = (n - k - 1)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Multiple Regression Assumptions

Errors (residuals) from the regression model:

$$e_i = (Y_i - \hat{Y}_i)$$

Assumptions:

- The errors are normally distributed
- Errors have a constant variance
- The model errors are independent

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Residual Plots Used in Multiple Regression

- These residual plots are used in multiple regression:
 - Residuals vs. Y₁
 - Residuals vs. X_{1i}
 - Residuals vs. X_{2i}
 - Residuals vs. time (if time series data)

Use the residual plots to check for violations of regression assumptions

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-29

Are Individual Variables Significant?

- Use t tests of individual variable slopes
- Shows if there is a linear relationship between the variable X_j and Y holding constant the effects of other X variables
- Hypotheses:
 - H_0 : $\beta_i = 0$ (no linear relationship)
 - H₁: β_j ≠ 0 (linear relationship does exist between X_j and Y)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Are Individual Variables Significant?

(continued)

 H_0 : $\beta_i = 0$ (no linear relationship)

 H_1 : $\beta_j \neq 0$ (linear relationship does exist between X_j and Y)

Test Statistic:

$$t_{STAT} = \frac{b_j - 0}{S_{b_j}}$$
 (df = n - k - 1)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..

Confidence Interval Estimate for the Slope

Confidence interval for the population slope β_i

$$b_j \pm t_{lpha/2} S_{b_j}$$
 where t has (n - k - 1) d.f.

	Coefficients	Standard Error	
Intercept	306.52619	114.25389	
Price	-24.97509	10.83213	
Advertising	74.13096	25.96732	

Here, thas (15-2-1)=12 d.f.

Example: Form a 95% confidence interval for the effect of changes in price (X_1) on pie sales:

 $-24.975 \pm (2.1788)(10.832)$

So the interval is (-48.576, -1.374)

(This interval does not contain zero, so price has a significant effect on sales)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-35

Confidence Interval Estimate for the Slope

(continued)

Confidence interval for the population slope β_i

	Coefficients	Standard Error	 Lower 95%	Upper 95%
Intercept	306.52619	114.25389	 57.58835	555.46404
Price	-24.97509	10.83213	 -48.57626	-1.37392
Advertising	74.13096	25.96732	 17.55303	130.70888

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of \$1 in the selling price, holding the effect of price constant

Basic Business Statistics, 11e @ 2009 Prentice-Hall, Inc.

Testing Portions of the Multiple Regression Model

Contribution of a Single Independent Variable X_i

 $SSR(X_j | all variables except X_j)$

- = SSR (all variables) SSR(all variables except X_i)
- Measures the contribution of X_j in explaining the total variation in Y (SST)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-37

Testing Portions of the Multiple Regression Model

(continued)

Contribution of a Single Independent Variable X_j, assuming all other variables are already included (consider here a 2-variable model):

From ANOVA section of regression for

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$$

From ANOVA section of regression for

$$\hat{\mathbf{Y}} = \mathbf{b}_0 + \mathbf{b}_2 \mathbf{X}_2$$

Measures the contribution of X₁ in explaining SST

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

The Partial F-Test Statistic

Consider the hypothesis test:

 H_0 : variable X_j does not significantly improve the model after all other variables are included

H₁: variable X_j significantly improves the model after all other variables are included

Test using the F-test statistic:

(with 1 and n-k-1 d.f.)

$$F_{STAT} = \frac{\text{SSR } (X_j \mid \text{all variables except j})}{\text{MSE}}$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-39

Testing Portions of Model: Example

Example: Frozen dessert pies

Test at the α = .05 level to determine whether the price variable significantly improves the model given that advertising is included

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

$$\alpha$$
 = .05, df = 1 and 12

$$F_{0.05} = 4.75$$

(For X_1 and X_2)

(For	X	only)
(1 01	/\2	Oilly,

ANOVA			
	df	SS	MS
Regression	2	29460.02687	14730.01343
Residual	12	27033.30647	2252.775539
Total	14	56493.33333	

ANOVA		
	df	SS
Regression	1	17484.22249
Residual	13	39009.11085
Total	14	56493.33333

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Relationship Between Test Statistics

- The partial F test statistic developed in this section and the t test statistic are both used to determine the contribution of an independent variable to a multiple regression model.
- The hypothesis tests associated with these two statistics always result in the same decision (that is, the p-values are identical).

$$t_a^2 = F_{1,a}$$

Where a = degrees of freedom

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-43

Coefficient of Partial Determination for k variable model

 $\begin{aligned} & r_{\text{Yj.(allvariables except j)}}^{2} \\ &= \frac{\text{SSR}\left(X_{j} \mid \text{all variables except j}\right)}{\text{SST-SSR}(\text{all variables}) + \text{SSR}(X_{i} \mid \text{all variables except j})} \end{aligned}$

 Measures the proportion of variation in the dependent variable that is explained by X_j while controlling for (holding constant) the other independent variables

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Coefficient of Partial Determination in Excel

- Coefficients of Partial Determination can be found using Excel:
 - PHStat | regression | multiple regression ...
 - Check the "coefficient of partial determination" box

Regression Analysis Coefficients of Partial Determination						
	Intermediate Calculations					
SSR(X1,X2)	29460.02687					
SST	56493.33333					
SSR(X2)	17484.22249	SSR(X1	X2)	11975.80438		
SSR(X1)	11100.43803	SSR(X2	X1)	18359.58884		
Coefficients						
r2 Y1.2	0.307000188					
r2 Y2.1	0.404459524					

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chan 14-4

Using Dummy Variables

- A dummy variable is a categorical independent variable with two levels:
 - yes or no, on or off, male or female
 - coded as 0 or 1
- Assumes the slopes associated with numerical independent variables do not change with the value for the categorical variable
- If more than two levels, the number of dummy variables needed is (number of levels - 1)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Dummy-Variable Example (with 2 Levels)

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$$

Let:

Y = pie sales

 $X_1 = price$

 X_2 = holiday (X_2 = 1 if a holiday occurred during the week) (X_2 = 0 if there was no holiday that week)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-4/

Example:

Sales = 300 - 30(Price) + 15(Holiday)

Sales: number of pies sold per week

Price: pie price in \$

Holiday:

{ 1 If a holiday occurred during the week 0 If no holiday occurred

 b_2 = 15: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

Chan 14-49

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Dummy-Variable Models (more than 2 Levels)

- The number of dummy variables is one less than the number of levels
- Example:

Y = house price; $X_1 = \text{square feet}$

If style of the house is also thought to matter:

Style = ranch, split level, colonial

Three levels, so two dummy variables are needed

Chan 14-50

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Dummy-Variable Models (more than 2 Levels)

(continued)

Example: Let "colonial" be the default category, and let X₂ and X₃ be used for the other two categories:

Y = house price

 X_1 = square feet

 $X_2 = 1$ if ranch, 0 otherwise

 $X_3 = 1$ if split level, 0 otherwise

The multiple regression equation is:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chan 14-51

Interpreting the Dummy Variable Coefficients (with 3 Levels)

Consider the regression equation:

$$\hat{Y} = 20.43 + 0.045X_1 + 23.53X_2 + 18.84X_3$$

For a colonial: $X_2 = X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_1$$

For a ranch: $X_2 = 1$; $X_3 = 0$

 $\hat{\mathbf{Y}} = 20.43 + 0.045 \mathbf{X}_1 + 23.53$

For a split level: $X_2 = 0$; $X_3 = 1$

 $\hat{\mathbf{Y}} = 20.43 + 0.045 \mathbf{X}_1 + 18.84$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

With the same square feet, a ranch will have an estimated average price of 23.53 thousand dollars more than a colonial.

With the same square feet, a split-level will have an estimated average price of 18.84 thousand dollars more than a colonial.

Interaction Between Independent Variables

- Hypothesizes interaction between pairs of X variables
 - Response to one X variable may vary at different levels of another X variable
- Contains two-way cross product terms

$$\hat{\mathbf{Y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_1 + \mathbf{b}_2 \mathbf{X}_2 + \mathbf{b}_3 \mathbf{X}_3$$

$$= \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_1 + \mathbf{b}_2 \mathbf{X}_2 + \mathbf{b}_3 \mathbf{X}_2$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..

Chan 14-5

Effect of Interaction

Given:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

- Without interaction term, effect of X₁ on Y is measured by β₁
- With interaction term, effect of X₁ on Y is measured by β₁ + β₃ X₂
- Effect changes as X₂ changes

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Significance of Interaction Term

- Can perform a partial F test for the contribution of a variable to see if the addition of an interaction term improves the model
- Multiple interaction terms can be included
 - Use a partial F test for the simultaneous contribution of multiple variables to the model

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Simultaneous Contribution of Independent Variables

- Use partial F test for the simultaneous contribution of multiple variables to the model
 - Let m variables be an additional set of variables added simultaneously
 - To test the hypothesis that the set of m variables improves the model:

$$F_{STAT} = \frac{[SSR(all) - SSR (all except new set of m variables)]/m}{MSE(all)}$$

(where F_{STAT} has m and n-k-1 d.f.)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..

Chap 14-57

Logistic Regression

- Used when the dependent variable Y is binary (i.e., Y takes on only two values)
- Examples
 - Customer prefers Brand A or Brand B
 - Employee chooses to work full-time or part-time
 - Loan is delinquent or is not delinquent
 - Person voted in last election or did not
- Logistic regression allows you to predict the probability of a particular categorical response

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Logistic Regression

(continued)

 Logistic regression is based on the odds ratio, which represents the probability of a success compared with the probability of failure

Odds ratio =
$$\frac{\text{probability of success}}{1-\text{probability of success}}$$

 The logistic regression model is based on the natural log of this odds ratio

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-5

Logistic Regression

(continued)

Logistic Regression Model:

$$\ln(\text{odds ratio}) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

Where k = number of independent variables in the model $\epsilon_i = random\ error$ in observation i

Logistic Regression Equation:

$$\ln(\text{estimated odds ratio}) = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_k X_{ki}$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Estimated Odds Ratio and Probability of Success

Once you have the logistic regression equation, compute the estimated odds ratio:

Estimatedodds ratio = e^{In(estimated odds ratio)}

The estimated probability of success is

Estimated probability of success = $\frac{\text{estimatedodds ratio}}{1 + \text{estimatedodds ratio}}$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

Chap 14-61

Chapter Summary

- Developed the multiple regression model
- Tested the significance of the multiple regression model
- Discussed adjusted r²
- Discussed using residual plots to check model assumptions
- Tested individual regression coefficients
- Tested portions of the regression model
- Used dummy variables
- Evaluated interaction effects
- Discussed logistic regression

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.