Business Statistics: A Decision-Making Approach 6th Edition

Chapter 10

Hypothesis Tests for One and Two Population Variances

Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Chap 10-1

Chapter Goals

After completing this chapter, you should be

- Formulate and complete hypothesis tests for a single population variance
- Find critical chi-square distribution values from the chi-square table
- Formulate and complete hypothesis tests for the difference between two population variances
- Use the F table to find critical F values

Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Chap 10-2

Chap 10-4

n-Making Approach, 6e © 2005 Prentice-Hall, Inc

Chi-Square Test Statistic

Hypothesis Tests for Variances

Tests for a Single Population Variance is: $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$ where $\chi^2 = \text{standardized chi-square variable } \\ n = \text{sample size} \\ s^2 = \text{sample variance} \\ \sigma^2 = \text{hypothesized variance}$ $\sigma^2 = \text{hypothesized variance}$

The

The Chi-square Distribution

- The chi-square distribution is a family of distributions, depending on degrees of freedom:
- d.f. = n 1

Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Finding the Critical Value

• The critical value, χ^2_{α} , is found from the chi-square table

ss Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc

Chap 10-7

Example

A commercial freezer must hold the selected temperature with little variation. Specifications call for a standard deviation of no more than 4 degrees (or variance of 16 degrees2). A sample of 16 freezers is tested and

yields a sample variance of $s^2 = 24$. Test to see whether the standard deviation specification is exceeded. Use

 $\alpha = .05$ -Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 10-8

Finding the Critical Value

• The the chi-square table to find the critical value: $\chi^2_{\alpha} = 24.9958 \ (\alpha = .05 \ \text{and} \ 16 - 1 = 15 \ \text{d.f.})$

The test statistic is:

Lower Tail or Two Tailed Chi-square Tests Lower tail test: Two tail test: H_0 : $\sigma^2 = \sigma_0^2$ H_0 : $\sigma^2 \ge \sigma_0^2$ H_{A} : $\sigma^{2} < \sigma_{0}^{2}$ H_A : $\sigma^2 \neq \sigma_0^2$ α/2 Do not reject H Reject Do not Reject $\chi^2_{1\text{-}\alpha/2}$ $\chi^2_{\alpha/2}$

F Test for Difference in Two Population Variances Hypothesis Tests for Variances H_0 : $\sigma_1^2 - \sigma_2^2 = 0$ Tests for Two Two tailed test H_{A} : $\sigma_{1}^{2} - \sigma_{2}^{2} \neq 0$ Population Variances $H_0: \sigma_1^2 - \sigma_2^2 \ge 0$ Lower tail test H_A : $\sigma_1^2 - \sigma_2^2 < 0$ F test statistic $H_0: \sigma_1^2 - \sigma_2^2 \le 0$ Upper tail test H_A : $\sigma_1^2 - \sigma_2^2 > 0$ ess Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 10-11

The F Distribution

- The F critical value is found from the F table
- The are two appropriate degrees of freedom: numerator and denominator

$$F = \frac{S_1^2}{S_2^2} \qquad \text{where } df_1 = n_1 - 1 \ ; \quad df_2 = n_2 - 1$$

- In the F table,
 - numerator degrees of freedom determine the row
 - · denominator degrees of freedom determine the column

ness Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Chap 10-13

Finding the Critical Value $H_0: \sigma_1^2 - \sigma_2^2 \ge 0$ $H_A: \sigma_1^2 - \sigma_2^2 < 0$ $H_0: \sigma_1^2 - \sigma_2^2 \le 0$ $H_A: \sigma_1^2 - \sigma_2^2 > 0$

rejection region for a one-tail test is

$$F = \frac{s_1^2}{s_2^2} > F_\alpha$$

(when the larger sample variance in the numerator)

rejection region for a two-tailed test is

$$F = \frac{s_1^2}{s_2^2} > F_{\alpha/2}$$

Chap 10-14

F Test: An Example

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data:

	NYSE	NASDAQ
Number	21	25
Mean	3.27	2.53
Std dev	1.30	1.16

Is there a difference in the variances between the NYSE & NASDAQ at the α = 0.05 level?

tistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Chap 10-15

(continued)

=2.327

F Test: Example Solution

Form the hypothesis test:

 H_0 : $\sigma_1^2 - \sigma_2^2 = 0$ (there is no difference between variances) H_A : $\sigma_1^2 - \sigma_2^2 \neq 0$ (there is a difference between variances)

- Find the F critical value for α = .05:
 - Numerator:
 - $df_1 = n_1 1 = 21 1 = 20$
 - Denominator:

$$df_2 = n_2 - 1 = 25 - 1 = 24$$

 $F_{.05/2, 20, 24} = 2.327$

Chap 10-16

F Test: Example Solution

■ The test statistic is:

■ The test statistic is:
$$F = \frac{S_1^2}{S_2^2} = \frac{1.30^2}{1.16^2} = 1.256$$
■ F = 1.256 is not greater than the critical F value of 2.327, so
$$\frac{H_0: \sigma_1^2 - \sigma_2^2 = 0}{H_A: \sigma_1^2 - \sigma_2^2 \neq 0}$$

we do not reject H₀ Conclusion: There is no evidence of a

difference in variances at $\alpha = .05$

ness Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Chap 10-17

Using EXCEL and PHStat

EXCEL

- F test for two variances:
 - Tools | data analysis | F-test: two sample for variances

- Chi-square test for the variance:
 - PHStat | one-sample tests | chi-square test for the variance
- F test for two variances:
 - PHStat | two-sample tests | F test for differences in two variances

Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.

Chapter Summary

- Performed chi-square tests for the variance
- Used the chi-square table to find chi-square critical values
- Performed F tests for the difference between two population variances
- Used the F table to find F critical values

Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc.