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Chapter One 

Development Of The Mathematical Model 

 

This paper presents some analysis of the growth model for mycelium in the 

presence and absence of diffusion based on the reaction-diffusion equation.  The work 

and effort applied in this project is in fact a continuation of collaborative work 

accomplished by Dr. Ernest Boyd, Mathematics, Dr. Keith Klein, Biology, and their 

students.  An extensive use of the computer software Mathematica
1
 will provide 

significant assistance in studying the behavior of the model and the mathematical analysis 

of the system.  This mathematical model attempts to explain the formation of regular and 

irregular growth patterns of mycelium.  A derivation of some algebraic inequalities using 

the Jacobian matrix will be needed to analyze stability and instability of the system at 

equilibrium.  These inequalities, as we shall see later, will be the conditions we are going 

to test as necessary conditions for irregular growth patterns.  We are hoping that certain 

values of the parameters involved in our mathematical model will satisfy the conditions 

imposed by the inequalities and so providing a solution to the problem. 

 

Suppose reaction-diffusion occurs in a two-dimensional space.  Let A x y t( , , )  be 

the density of some substance at time t , then the rate of change of this substance with 

respect to time includes the growth term, the decay term, and the diffusion term of that 

substance.  Namely, 

                                                           
1
 All analysis and graphs presented in this paper are generated by Mathematica 4.1. 
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Rate of Change = 




A

t
 = growth  decay  diffusion. 

where, growth and decay can depend on the reaction between A and another substance.  

This leads to a system of two coupled partial differential equations. The biological 

features of the mycelium model must show two different patterns of growth.  We know 

that mycelia grow in some environments outward in the radial direction with symmetric, 

regular logistic growth (Figure 1.1.)
2
  In other environments the cells also produce some 

chemical inhibitor, which propagates radially and outwards as well causing the cells to 

grow irregularly when diffusion is present and a different pattern appears (Figure 1.2.)
3
  

This is due to the high concentration of the inhibitor and faster diffusion rate compared 

with the cells.  We are going to use polar coordinates in our analysis.  Let U U r t ( , , )  

be the density of cells of mycelium = 
cells

mm2









 , W W r t ( , , )  be the concentration of 

chemical inhibitor = 
moles

mm2









 .  In addition, suppose the cells are placed in a circular petri 

dish with sufficient culture media to grow.  With diffusion the system of differential 

equations will be: 

 

 



U

t
F U W CUW D U   ( , ) 1

2  (1) 

 



W

t
AU BW D W   2

2

2  (2) 

where F U W( , )  represents the mycelial growth rate, CUW  represents the effect of the 

                                                           
2
 Bezzi, M., A. Ciliberto, and A.Mengoni, “Pattern Formation by Competition: A Biological Example,” 

ArXiv , 2001, p. 8. 
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chemical inhibitor upon the decay of the cells, D U1

2  represents the rate at which the 

cells diffuse, AU 2  represents the rate of production of the chemical inhibitor, BW  

represents its rate of decay, and D W2

2  represents the rate at which the chemical 

inhibitor diffuses. 

 

Since we are using polar coordinates, we assume 0  r rmax  and 0 2   , with 

initial conditions U r
U if r r

if r r
( , , ) 0

0

0 0

0










 and W r( , , ) 0 0 .  At the boundary, we 

assume there is no growth of the mycelium or production of the chemical inhibitor, i.e. 

U r t( , , )max   0  and W r t( , , )max   0.  We take care of periodicity by supposing that the 

density of mycelium and the concentration of the chemical inhibitor do not change for all 

multiples of 2; that is to say U r t U r t( , , ) ( , , )   2  and W r t W r t( , , ) ( , , )   2 .  

We hypothesize that the growth rate of the mycelium is a hyperlogistic curve 

F U W RU
U

K

p( , ) ( ) 1  with p  1.
4
  Here, R is the intrinsic growth rate, and K is the 

carrying capacity. 

 

This system can be normalized and represented in dimensionless form as follows: 

 



u
f u w uw u   ( , ) 2  (3) 

 



w
au bw d w   2 2  (4) 

                                                                                                                                                                             
3
 Bezzi, p. 8. 

4
 Tsoularis, A., Analysis of Logistic Growth Models, Res. Lett. Inf. Math. Sci. (2001) 2, pp. 23-46. 
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where u
U

K
 , w

C r W

D


( )max

2

1

,  
D t

r

1

2( )max

, a AC
K r

D












( )max

2

1

2

, b
B r

D


( )max

2

1

, 

d
D

D


2

1

.  Here, d is the coefficient of diffusion and we assume it is greater than one.  

With our hypothesis f u w ru up( , ) ( ) 1  where r
R r K

D

p



( )max

2 1

1

.
5
  At equilibrium, 









u w
 0  and    2 20u w .  Hence, we solve (3) and (4) as f u w u w( , )* * * *  and 

a u bw( )* *2   to determine the steady-state equilibrium ( , )* *u w .  Since we normalized all 

parameters, we restrict 0 1 u w r* *, , , a b,  0 , and d  1.  In the later chapters, we will 

study f u w( , )  in more detail. 

 

Experiments in Dr. Klein’s laboratory show that the cells of mycelium 

demonstrate symmetrical growth patterns in the absence of the chemical inhibitor; 

however, with the presence of the inhibitor the cells form an asymmetrical spatial pattern.  

Therefore, in the mathematical model we need to look for a stable equilibrium without 

diffusion and an unstable equilibrium with diffusion.  We analyze the mathematical 

model in (3) and (4) using standard Fourier analysis as shown in [6] leading to the 

following inequalities. 

 b

d

f

u
w b  





*

*  (5) 

                                                           
5
 A detailed explanation of each parameter and its representation in (1), (2), (3), and (4) can be found in  

[6] Qian, “Reaction Diffusion Equations for the Growth of Mycelium”. 
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0 3 2
2

2

2

   

 


















a u b
f

u
au

f

w
d

d
f

u
b dw

d
( )*

*

*

*

*

*












 (6) 

 

These inequalities are necessary conditions on f u w( , )  in order for ( , )* *u w  to be a stable 

equilibrium without diffusion and an unstable equilibrium with diffusion.  However, the 

most challenging task is to find such a growth function f u w( , )  that will satisfy the 

inequalities.  We will show in the next chapter that choosing the growth function to be 

f u w ru u( , ) ( ) 1  contradicts the inequalities in (5) and (6).  Therefore, we will modify 

f u w( , )  to be generalized logistic growth to search for possible solutions.  This is what 

we are going to discuss in Chapter Three and setup Mathematica to test and analyze. 

 



10 

Chapter Two 

Mathematical Analysis With The Logistic Growth Function 

 

In this chapter, we will show that choosing the growth function f u w( , )  to be a 

logistic growth with p  1 , i.e., f u w ru u( , ) ( ) 1 , will lead us to a contradiction with 

the conditions prescribed by the inequalities in (5) and (6).  Consider the Jacobian matrix  

 

J q D

f

u
w q

f

w
u

au b q d

 
  

 















2
2

22









*

*

*

*

*

 (7) 

where D
d












1 0

0
.
6
  The characteristic eigenvalues corresponding to this matrix are of 

the form  
    tr( ) tr( ) det( )J q D J q D J q D2 2 2 24

2
.  For instability we need 

| |  0 .  This holds when tr( )J q D 2 0  or det( )J q D 2 0 , so we have two cases to 

probe. 

 

If tr( )J q D 2 0 , we have 




f

u
w q b q d

*

*    2 2 0  which implies that 





f

u
w b q d w b

*

* *( )     2 1 .  Yet, in the absence of diffusion we needed 





f

u
w b

*

*  .  This leads us to a contradiction.  If det( )J q D 2 0 , we have 

   








f

u
w q b q d

f

w
u au

*

*

*

* * 








    









 2 2 2 0  which implies that 
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dq b dw d
f

u
q b w

f

u
au

f

w
u4 2 2 0  









  









  









 *

*

*

*

*

*

*











.  The latter inequality is 

a parabola in q2  with vertex in the forth quadrant that opens upward. 

 

We next examine the logistic growth function f u w ru u( , ) ( ) 1 .  Suppose the intrinsic 

growth rate r is a function of w only, i.e. r r w ( ) .  Then, 




f

u
r u

*

*( ) 1 2  and therefore 





f

u
w r u w

*

* * *( )   1 2 .  Note that at equilibrium we have f u w u w( , )* * * * , so 

w r u* *( ) 1 .  We then substitute 




f

u

*

 and w*  in (5) to obtain 

b

d

f

u
w b  





*

*  

b

d
r u r u b    ( ) ( )* *1 2 1  

b

d
ru b  *  

This is not possible because we have a negative real number trapped between two 

positive numbers for all 0  r  and 0  u* .  Hence, limiting the growth function to be 

f u w ru u( , ) ( ) 1  does not satisfy the inequality in (5).  Dr. Boyd also tried 

f u w
w

u u( , ) ( ) 








 


1 1  which will give the same result. 

                                                                                                                                                                             
6
 Refer to [6] Qian for more explanation. 
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Chapter Three 

Mathematical Analysis With The Hyperlogistic Growth Function And Results 

 

 In the previous chapter, we proved by letting p  1  in the modified growth 

function, f u w ru up( , ) ( ) 1 , the algebraic inequality in (5) does not hold.  This leads 

us to consider different values for p.  Before we analyze the system of differential 

equations in (3) and (4) for various values of p, we are going to study the behavior of the 

model without diffusion when p  1 .  Recall the differential equations in (3) and (4).  

Having no diffusion in the growth process eliminates the diffusion terms in those 

equations, i.e.,    2 20u w , and the system simplifies, 

 

 



u
ru u uw  ( )1  (8) 

 



w
au bw 2  (9) 

 

Again at equilibrium, we have 








u w
 0 .  The next step is to solve (8) and (9) to 

determine the isoclines w
a

b
u 2  and w r u ( )1 . 

 

We then setup Mathematica to solve for the equilibrium point ( , )* *u w  to obtain 
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br br a br

a

r a br br a br

a

( ) ( )4

2

2 4

2
,  .

7
  The Jacobian matrix 

corresponding to the system in (8) and (9) is, 

 

 r u ru w u

au b

( )1

2

   











  (10) 

 

Now substitute ( , )* *u w  in (10) to get 
br br a br

br br a br

a
br br a br b

2 3 4
4

2
4

 
 

   

















( )
( )

( )

 which 

has a corresponding characteristic eigenvalue of     

   2 4 8 4 4 2 4

4

2 3 2 3
2

ab br br a br abr a br br a br ab br br a br

a

           



( ) ( ) ( )

 

For example, let a  1 , b  05. , and r  09. .  The isoclines are shown in Figure 3.3.  

Then    0467 0681. . i  and so the point ( , ) ( . . )* *u w  0482 0465,   is a stable 

equilibrium.  We let Mathematica do the symbolic computation to determine the behavior 

of the vector field by calling the subroutine PlotVectorField.  The path of a trajectory in 

time can be solved numerically with u( ) .0 001 , w( )0 0  and plotted by calling the 

subroutines NDSolve and ParametricPlot; see Figure 3.4.  Note that ( , )* *u w  in Figure 

3.4 is a stable spiral node.  The graphs of u w( )  and ( )  as functions of   are shown in 

Figures 3.5 and 3.6. 

                                                           
7
 Refer to attached Appendix One for Mathematica notebook. 
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 Next, we analyze the generalized logistic growth function, f u w ru up( , ) ( ) 1 , 

using the algebraic compound inequalities in (5) and (6).  We are going to do three tests 

here.  First, we test inequality (5) for given values of b and d.  We are going to call it 

Test1.  Then, we test the left side of inequality (6), and we are going to call it Test2.  

Finally, we take the right side of inequality (6) minus the left side, and we are going to 

call it Test3.  The three tests in order are: 

 

b

d

f

u
w b  





*

*  

0 3 22  a u b
f

u
au

f

w
( )*

*

*

*






 

0
2

3 2

2

2

 


















  d

d
f

u
b dw

d
a u b

f

u
au

f

w



 







*

*

*

*

*

*

( )  

 

Remember that these tests are necessary conditions for validity of the solution but not 

sufficient.  So we may or may not obtain a solution even if these conditions are satisfied.  

We now proceed with the analysis as follows. 

 

At equilibrium  f u w r u u u w
p

( , ) ( )* * * * * *  1 .  This gives 

 w r u u
p* * *( ) 
1

1  and    




f

u
rp u u r u

p p
*

* * *( )  


1
1

.  Substituting 




f

u

*

 and w*  in 

(5) to get Test1, 
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b

d
rp u u r u r u u b

p p p

     
 

1 1
1 1* * * * *  

    b

d
r p u p u b

p p

   


( ) * *1
1

 

 
    

b

d
r u p u b

p

   
* *1

1 1  (11) 

 

Note that one u-intercept for this polynomial is u
p

p
* 

 1
. 

 

For the second test, we need to find 




f

w

*

 and the constant a.  Since, f u w( , )  is a 

function of u only, this means that 




f

w

*

 0 .  Also, since  w r u u
p* * *( ) 
1

1  and 

 w
a

b
u* *

2

 at equilibrium, then  a rb u u
p

 
* *( )

3

1 .  Hence Test2 is 

 

     0 3 1 1 0
1 1

     
 

rb u u rbp u u r u
p p p* * * * *( ) ( )  

    0 3 2 1
1

   


rb u u p u
p* * *( )  

(12) 

 

Similarly, Test3 simplifies in the same manner. 

 

     
0

1

4

1
2


   





b d pr u u w r u

d

p p* * * *( )
Test2  
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0

1 1

4

1 1
2


    



 

b d pr u u r u u r u

d

p p p* * * * *( ) ( )
Test2  

    
   0

1 1

4
3 2 1

1 2

1


  

   




b rd u p u

d
rb u u p u

p

p

* *

*
( )

( )  

         0 1 1 4 3 2 1
1 2 1

       
 

b rd u p u rbd u u p u
p p* * *( ) ( )  (13) 

 

At this point, we have no idea what values for a, b, d, r and p will satisfy the tests 

in (11), (12), and (13).  Thus, the next phase is to search for possible values, if there are 

any, satisfying the necessary conditions in (11), (12), and (13).  The best way to approach 

this is by fixing b, d and p and then seeking possible values for r and u* .  Once we find 

valid r and u*  then we retrieve a from  
 

a rb u u b
w

u

p

  
* *

*

*
( )

3

21  at equilibrium.  Let 

p  5, b  015. , d  35.  and assume we are looking for r and u* .  The solution is 

represented in terms of a feasible set as in Figure 3.7a; the red region implies the three 

tests are all satisfied.  Figure 3.7b shows a as a function of u and r. 

 

Now, recall the Jacobian matrix in (7).  We already have shown that 




f

w

*

 0  and 

   




f

u
r u p u u

p
*

* * *( )  
1

1 .  Moreover,  w r u u
p* * *( ) 
1

1 ,  a rb u u
p

 
* *( )

3

1 .  

Hence, we can write (7) as, 
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J q D

r u p u u q u

au b q d

p

 
   

 















2

1 2

2

1

2

* * * *

*
 

 

At equilibrium, 








u w
 0 , and    2 20u w .  In general, the isoclines are functions 

w in terms of u, i.e. w
a

b
u 2  and w ru up 1 1( ) .  For example when p  5, one 

isocline is, w u u 09 14. ( )  while the other is w u 0133 2. ; see Figure 3.8. 

 

Note that we have two equilibra other than ( , )0 0 .  It is obvious that ( , )0 0  is a 

stable equilibrium.  One equilibrium point is ( . , . )0630 0051  which has eigenvalues 

 1 0071  .  and  2 0038 . .  Consequently, ( . , . )0630 0051  is a saddle point.  The 

second equilibrium is ( . , . )0709 0065  which has eigenvalues    0025 0059. . i .  So, we 

conclude that ( . , . )0709 0065  is a stable equilibrium.  The graphs of the vector field and 

the path of a trajectory in time with u( ) .0 055 , w( )0 0  are shown in Figures 3.9.  The 

graphs of u( ),  w( )  are shown in Figures 3.10 and 3.11.  The mycelial cells will grow 

until they reach their maximum, which is the carrying capacity. 

 

 The next example presents another interesting result.  Suppose p  3 , a  0053. , 

b  0095. , d  21. , r  099.  and q2 0 0001 . .  The isoclines w u 0558 2.  and 

w u u 099 12. ( )  are shown in Figure 3.12.  Then the equilibrium point is ( . , . )0437 0106  

which has corresponding eigenvalues of the form   0017 0087. . i .  Figure 3.13 shows 

the behavior of the vector field and the path of a trajectory in time with initial conditions 
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u( ) .0 02 , w( )0 0 .  Figures 3.14 and 3.15 show the trajectory u w( )  and ( )  as 

functions of time  .  Note that in this case we are experiencing a limit cycle, which is not 

biologically possible. 

 

 The next example is more biologically realistic.  Suppose p  3 , a  005. , 

b  009. , d  101. , r  099.  and q2 0 01 . .  Here, the isoclines w u 0556 2.  and 

w u u 099 12. ( )  are shown in Figure 3.16.  Then the equilibrium point is ( . , . )0444 0098  

which has corresponding eigenvalues of the form   0015 008. . i .  Figure 3.17 shows 

the behavior of the vector field, and the path of the trajectory in time with initial 

conditions u( ) .0 02 , w( )0 0 .  In this case, the cells of mycelium die completely after 

they reach their maximum growth.  The graphs of u w( )  and ( )  are shown in Figures 

3.18 and 3.19. 

 

 Appendix Two is a Mathematica code to search for possible values for r, u and a 

given fixed values for b, d and p.  We claim that there exists a solution inside the feasible 

region where the three tests are fulfilled.  We have found some good results.  For 

instance, Figure 3.20a shows the feasible region for p  3 , b  01. , d  55. .  Figure 3.21a 

shows the feasible region for p  3 , b  01. , d  8 .  Figure 3.22a shows the feasible 

region for p  3 , b  013. , d  9 .  Figure 3.23a shows the feasible region for p  3 , 

b  005. , d  55. .  Figure 3.24a shows the feasible region for p  3 , b  001. , d  55. .  

Figure 3.25a shows the feasible region for p  4 , b  01. , d  3.  Figure 3.26a shows the 

feasible region for p  4 , b  01. , d  7 .  Figure 3.27a shows the feasible region for 
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p  4 , b  005. , d  125. .  Figure 3.28a shows the feasible region for p  4 , b  025. , 

d  12 .  Figure 3.29a shows the feasible region for p  5, b  01. , d  25. .  Figure 3.30a 

shows the feasible region for p  5, b  01. , d  75. .  Figure 3.31a shows the feasible 

region for p  5, b  009. , d  7 .  Figure 3.32a shows the feasible region for p  5, 

b  005. , d  175. .  Figure 3.33a shows the feasible region for p  7 , b  007. , d  10 .  

On the other hand, Figures 3.20b through 3.33b show a as a function of u and r according 

to the values of the parameters given in Figures 3.20a through 3.33a. 

 

 In conclusion, we have found some promising numerical values satisfying the 

necessary conditions introduced by the inequalities.  A value for the parameter a will be 

determined from the experiments by Dr. Klein.  The surface for a as a function of u and r 

will be drawn to determine the level curve for that value of a.  The value of r will be 

chosen and then the point on the level curve for that value of r will determine the 

equilibrium level u that is contained in the feasible region.  Next we need to compare 

these values with numerical simulations of the model.  This project is the ground 

foundation for further work solving the model numerically using either a finite difference 

method or a finite element method.  Finally, the numerical values described in this paper 

must be examined by biologists to determine if they are biologically meaningful. 
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Figure 1.1. Pattern formed without 

diffusion. (Courtesy of M. Bezzi.) 

Figure 1.2. Pattern formed with diffusion. 

(Courtesy of M. Bezzi.) 

 

  

Figure 3.3. Isoclines for p  1 , a  1 , 

b  05. , r  09. . 

Figure 3.4. Phase diagram for p  1 , a  1 , 

b  05. , r  09. . 

 

  
Figure 3.5. u( )  as a function of  . Figure 3.6. w( )  as a function of  . 
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Figure 3.7a. Feasible region in red for 

p  5, b  015. , d  35. . 

Figure 3.7b. a as a function of u and r. 

 

  
Figure 3.8. Isoclines for p  5, a  002. , 

b  015. , r  09. . 

Figure 3.9. Phase diagram for q2 0 001 . , 

p  5, a  002. , b  015. , r  09. , d  35. . 

 

  
Figure 3.10. u( )  as a function of  . Figure 3.11. w( )  as a function of  . 
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Figure 3.12. Isoclines for p  3 , a  0053. , 

b  0095. , r  099. . 

Figure 3.13. Phase diagram for 

q2 0 0001 . , p  3 , a  0053. , b  0095. , 

r  099. , d  21. . 

 

  
Figure 3.14. u( )  as a function of  . Figure 3.15. w( )  as a function of  . 

 

  
Figure 3.16. Isoclines for p  3 , a  005. , 

b  009. , r  099. . 

Figure 3.17. Phase diagram for q2 0 01 . , 

p  3 , a  005. , b  009. , r  099. , 

d  101. . 
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Figure 3.18. u( )  as a function of  . Figure 3.19. w( )  as a function of  . 

 

 

 
Figure 3.20a. Feasible region in red for 

p  3 , b  01. , d  55. . 

Figure 3.20b. a as a function of u and r. 

 

 

 
Figure 3.21a. Feasible region in red for 

p  3 , b  01. , d  8 . 

Figure 3.21b. a as a function of u and r. 
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Figure 3.22a. Feasible region in red for 

p  3 , b  013. , d  9 . 

Figure 3.22b. a as a function of u and r. 

 

 

 
Figure 3.23a. Feasible region in red for 

p  3 , b  005. , d  55. . 

Figure 3.23b. a as a function of u and r. 

 

 

 
Figure 3.24a. Feasible region in red for 

p  3 , b  001. , d  55. . 

Figure 3.24b. a as a function of u and r. 
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Figure 3.25a. Feasible region in red for 

p  4 , b  01. , d  3. 

Figure 3.25b. a as a function of u and r. 

 

 

 
Figure 3.26a. Feasible region in red for 

p  4 , b  01. , d  7 . 

Figure 3.26b. a as a function of u and r. 

 

 

 
Figure 3.27a. Feasible region in red for 

p  4 , b  005. , d  125. . 

Figure 3.27b. a as a function of u and r. 
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Figure 3.28a. Feasible region in red for 

p  4 , b  025. , d  12 . 

Figure 3.28b. a as a function of u and r. 

 

 

 
Figure 3.29a. Feasible region in red for 

p  5, b  01. , d  25. . 

Figure 3.29b. a as a function of u and r. 

 

 

 
Figure 3.30a. Feasible region in red for 

p  5, b  01. , d  75. . 

Figure 3.30b. a as a function of u and r. 
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Figure 3.31a. Feasible region in red for 

p  5, b  009. , d  7 . 

Figure 3.31b. a as a function of u and r. 

 

 

 
Figure 3.32a. Feasible region in red for 

p  5, b  005. , d  175. . 

Figure 3.32b. a as a function of u and r. 

 

 

 
Figure 3.33a. Feasible region in red for 

p  7 , b  007. , d  10 . 

Figure 3.33b. a as a function of u and r. 
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APPENDIX ONE 

This Mathematica notebook plots the phase plane diagram. 

 

ClearAll[a, b, d, r, q2, u, w];  

 

Solution1 = {a = 0.05; r = 0.99; b = 0.09; d = 1.01; q2 = 0.01; p = 3; }; 

  

Solution2 = {a = 0.04; r = 0.81; b = 0.08; d = 1.01; q2 = 0.01; p = 3; }; 

  

Solution3 = {p = 5; a = 0.015; b = 0.112; d = 3.5; r = 0.9; q2 = 0.0004; }; 

  

Solution4 = {p = 5; a = 0.015; b = 0.111; d = 3.5; r = 0.9; q2 = 0.001; };  

 

Solution5 = {p = 5; a = 0.015; b = 0.11; d = 3.5; r = 0.9; q2 = 0.0016; };  

 

f[u_, w_] := {r*u^p*(1 - u) - u*w - q2*u, a*u^2 - b*w - d*q2*w};  

 

equilibrium = N[Solve[{f[u, w] == 0}, {u, w}]];  

 

{SuperStar[u] = u /. equilibrium[[p + 1]],  SuperStar[w] = w /. equilibrium[[p + 1]]} 

 

J[u_, w_] = {D[f[u, w], u], D[f[u, w], w]};  

 

MatrixForm[Transpose[J[u, w]]];  

 

JacobianMatrix = Simplify[J[SuperStar[u], SuperStar[w]]];  

 

\[Lambda] = Eigenvalues[JacobianMatrix] 

 

Needs["Graphics`PlotField`"] 

 

isoclines = Plot[{(a/(b + d*q2))*u^2, r*u^(p - 1)*(1 - u) - q2}, {u, 0, 1}, PlotRange -> 

{{0, 1},                        {0, 0.09}}, PlotStyle ->  {{RGBColor[1, 0, 0]}, {RGBColor[0, 0, 

1]}}, AxesLabel -> {u[t], w[t]}, DisplayFunction -> Identity] 

 

directionField = PlotVectorField[f[u, w], {u, 0, 1}, {w, 0, 0.2},   ScaleFunction -> (1 & ), 

ScaleFactor -> 0.025, PlotPoints -> 0.2,  Axes -> True, DisplayFunction -> Identity] 

 

Show[isoclines, directionField, DisplayFunction -> $DisplayFunction] 

 

ClearAll[u, w] 

 

tmax = 500;  
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sol1 = NDSolve[{Derivative[1][u][t] == r*u[t]^p*(1 - u[t]) - u[t]*w[t] - q2*u[t], 

Derivative[1][w][t] == a*u[t]^2 - b*w[t] - d*q2*w[t], u[0] == 0.47, w[0] == 0}, {u[t], 

w[t]}, {t, 0, tmax}];  

 

traj1 = ParametricPlot[Evaluate[{u[t], w[t]} /. sol1], {t, 0, tmax},  PlotRange -> {{0, 1}, 

{0, 0.2}}, PlotStyle -> RGBColor[0, 1, 0],  DisplayFunction -> Identity] 

 

Show[isoclines, directionField, traj1, DisplayFunction -> $DisplayFunction] 

 

ClearAll[u, w] 

 

sol2 = NDSolve[{Derivative[1][u][t] == r*u[t]^p*(1 - u[t]) - u[t]*w[t] - q2*u[t], 

Derivative[1][w][t] == a*u[t]^2 - b*w[t] - d*q2*w[t], u[0] == 0.47, w[0] == 0}, {u[t], 

w[t]}, {t, 0, tmax}];  

 

traj2 = ParametricPlot[Evaluate[{t, u[t]} /. sol2], {t, 0, tmax}, PlotRange -> {{0, tmax}, 

{0, 1}}, PlotStyle -> RGBColor[0, 1, 0],  AxesLabel -> {t, u[t]}, DisplayFunction -> 

Identity] 

 

Show[traj2, DisplayFunction -> $DisplayFunction] 

 

sol3 = NDSolve[{Derivative[1][u][t] == r*u[t]^p*(1 - u[t]) - u[t]*w[t] - q2*u[t], 

Derivative[1][w][t] == a*u[t]^2 - b*w[t] - d*q2*w[t], u[0] == 0.47, w[0] == 0}, {u[t], 

w[t]}, {t, 0, tmax}];  

 

traj3 = ParametricPlot[Evaluate[{t, w[t]} /. sol3], {t, 0, tmax}, PlotRange -> {{0, tmax}, 

{0, 1}}, PlotStyle -> RGBColor[1, 0, 0], AxesLabel -> {t, w[t]}, DisplayFunction -> 

Identity] 

 

Show[traj3, DisplayFunction -> $DisplayFunction] 

 

p = 5; r = 0.9; d = 3.5;  

 

HyperLogistic[u] = r*u^p*(1 - u);  

 

f[u_, w_] := {HyperLogistic[u] - u*w - q2*u, a*u^2 - b*w - d*q2*w};  

 

Equilibrium = N[Solve[{f[u, w] == 0}, {u, w}]]; 

 

For[b = 0.1, b <= 0.2, b += 0.001,  

  For[a = 0.015, a <= 0.025, a += 0.001,  

    For[q2 = 0.0001, q2 <= 0.01, q2 += 0.0001,  

      For[j = 1, j <= p + 1, j++, 

 If[VectorQ[{u, w} /. Equilibrium[[j]], Head[#1] === Real && 0 <= #1 <= 1 & ],  

 

              {SuperStar[u] = u /. Equilibrium[[j]], SuperStar[w] =   w /. Equilibrium[[j]]};  
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J[u_, w_] = {D[f[u, w], u], D[f[u, w], w]};  

 

             MatrixForm[Transpose[J[u, w]]];  

 

             JacobianMatrix =   Simplify[J[SuperStar[u], SuperStar[w]]];  

 

             \[Lambda] = Eigenvalues[JacobianMatrix];  

 

If[Negative[Re[\[Lambda][[1]]]] && Negative[Re[\[Lambda][[2]]]], Null, 

If[Positive[Re[\[Lambda][[1]]]] && Positive[Re[\[Lambda][[2]]]], 

Print["{u,w}=", {u, w} /. Equilibrium[[j]], " \[Lambda]=", \[Lambda], " Instable 

Equilibrium, q^2=",  q2, ", a=", a, ", b=", b], Null]], Null]]]]] 
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APPENDIX TWO 

This Mathematica notebook plots the feasible region and the surface for a(u, r). 

 

ClearAll[a, b, d, f, r, p, u, w] 

 

f[u_, w_] = r*u^p*(1 - u);  

 

equil = Solve[f[u, w] == u*w, w]; 

  

SuperStar[w][u_] = Simplify[w /. equil[[1]]];  

 

a = (b*SuperStar[w][u])/u^2;  

 

Test1[u_] = Simplify[D[f[u, w], u] - SuperStar[w][u]];  

 

Test2[u_] = Simplify[3*a*u^2 - b*D[f[u, w], u] - 2*a*u*D[f[u, w], w]]; 

  

Test3[u_] = Simplify[(d*Test1[u] - b)^2/(4*d)]; 

  

Clear[r, u] 

 

b = 0.15; d = 3.5; p = 5;  

 

feasibleSet = {{0, 0}};  

 

nonfeasibleSet = {};  

 

usteps = 100;  

 

rsteps = 100;  

 

Do[If[Test2[u] > 0 && Test3[u] > Test2[u] && b/d < Test1[u] < b, 

AppendTo[feasibleSet, {u, r}], AppendTo[nonfeasibleSet, {u, r}]], {u, 0, 1, 1/usteps}, {r, 

0, 1, 1/rsteps}] 

 

feasiblePlot = ListPlot[feasibleSet, PlotRange -> {{0, 1}, {0, 1}}, PlotStyle -> 

RGBColor[1, 0, 0], DisplayFunction -> Identity] 

 

nonfeasiblePlot = ListPlot[nonfeasibleSet, PlotRange -> {{0, 1}, {0, 1}}, PlotStyle -> 

RGBColor[0, 0, 1], DisplayFunction -> Identity] 

 

Show[feasiblePlot, nonfeasiblePlot, Prolog -> PointSize[0.005], AxesLabel -> {"u", "r"}, 

DisplayFunction -> $DisplayFunction] 

 

Plot3D[a, {u, 0, 1}, {r, 0, 1}, AxesLabel -> {"u", "r", "a"}] 
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Needs["Graphics`ImplicitPlot`"] 

 

ImplicitPlot[a == 0.005, {u, 0.001, 1}, {r, 0.001, 1}] 

 



33 

BIBLIOGRAPHY 

 

1. Bezzi, M., A. Ciliberto and A. Mengoni, “Pattern Formation by Competition: a 

Biological Example,” ArXiv, 2001. 

2. Bogomolova, E.V., A. Bulianitsa, E. Bystrova, V. Kurochkin, L. Panina, “Spatial 

periodicity in mycelial fungi growth with respect to their life strategies,” 

http://www.interjournal.org, Abstract 348, and http://www.geocities.com/ppp5029. 

3. Croan, Suki C., “Lyophilization of Hypha-Forming Tropical wood-inhabiting 

Basidiomycotina,” Mycological Society of America, 92(4), 2000, pp. 810-817. 

4. Murray, J. D., Mathematical Biology: An Introduction, Third Edition, Springer-

Verlag, New York, 2001. 

5. Murray, J. D., Mathematical Biology: Spatial Models and Biomedical Applications, 

Third Edition, Springer-Verlag, New York, 2001. 

6. Qian, Ningfang, Reaction Diffusion Equations for the Growth of Mycelium, M.S. 

Alternate Plan Paper, Mankato State University, 1994. 

7. Tsoularis, A., Analysis of Logistic Growth Models, Res. Lett. Inf. Math. Sci. (2001) 

2, pp. 23-46. 

8. Zhang, Feng, A Mathematical Model for the Growth of Mycelium in Two 

Dimensions with Circular Symmetry, M.S. Alternate Plan Paper, Mankato State 

University, 1992. 

 


