Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. find higher order derivatives of
 - a. explicitly defined functions
 - b. implicitly defined functions

when

Higher order derivatives: Introduction & Computations

- Given a function f(x).
- Then its derivative f'(x) is again a function of x
- So we can differentiate f'(x) further.
- This leads to the idea of higher order derivatives of f(x).
- Given f(x). Then

 1^{st} derivative of f(x)

 2^{nd} derivative of f(x)

 3^{rd} derivative of f(x)

• $f'(x) = \frac{d}{dx} (f(x))$ • $f''(x) = \frac{d}{dx} (f'(x))$ • $f'''(x) = \frac{d}{dx} (f''(x))$ \vdots • $f^{(k)}(x) = \frac{d}{dx} (f^{(k-1)}(x))$

 k^{th} derivative of f(x)

Other notations

- $\bullet \quad y', y'', \cdots, y^{(k)}$
- $\bullet \quad \frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \dots$
 - D,D^2,D^3,\cdots

We learn computations and concept with the help of examples.

See examples 1, 2, 3, 4, 5, 6, 7, 8, 9 done in class

See example 2 to learn how to find higher order derivatives for implicitly defined functions.