Learning outcomes

After completing this section, you will inshaAllah be able to

- 1. an idea about the meaning and definition of limit
- 2. get an idea about the meaning of one-sided limit
- 3. know the meaning of existence of limit
- 4. understand and compute infinite limits
- 5. find vertical asymptotes of a function

Meaning of limit

• We learn by an example

To understand
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$

- We use the graph of the function and a table of values near x=1
- By graph

Note: The function $y = \frac{x^3 - 1}{x - 1}$ is not defined at x=1. In fact the circle 'o' in the graph indicates that this point is missing from the graph.

Question

What happens to the values of

$$y = \frac{x^3 - 1}{x - 1}$$
 as x gets closer to 1

• By table

A table of values of the function near x=1 is

	_				-	•					
X	0.5	0.75	0.9	0.99	0.999	1	1.001	1.01	1.1	1.25	1.5
У	1.750	2.313	2.710	2.970	2.997	not defined	3.003	3.030	3.310	3.813	4.750

- Conclusion: As the values of x get closer and closer to 1, we see that the values of y get closer and closer to 3.
- That means $\lim_{x\to 1} \frac{x^3-1}{x-1} = 3$.

See class explanation for more understanding

(Specially "Run-and-Hit idea")

Understanding the definition of limit

See example 1 done in class

One-sided limits

- We learn by an example
- Consider a function y = f(x) given by the following graph.

- From the graph we have:
 - \triangleright When we approach 0 from the left side, the value of f(x) approaches -1.
 - \triangleright When we approach 0 from the right side, the value of f(x) approaches 1.
- We describe this situation by saying
 - The limit of f(x) is -1 as x approaches 0 from left and write as $\lim_{x \to -1} f(x) = -1, \text{ and}$
 - The limit of f(x) is 1 as x approaches 0 from right and write as $\lim_{x \to a} f(x) = 1$
 - Q. Will we always get different answers of left and right limits? Ans. No. Check what happened in example 1 above.

Meaning of existence of a limit

• We see from above that some time the left side & right side limit will be same, and some time these will be different.

•
$$\lim_{x \to a} f(x)$$
 exists and $\lim_{x \to a} f(x) = L$ if

left side limit = right side limit

i.e. $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$

Example:

- Q: Does $\lim_{x\to 0} f(x)$ exist?
- Q. Does $\lim_{x\to 1} f(x)$ exist?

See examples 2, 3 done in class

What are infinite limits? (those limits whose answer is ∞ or $-\infty$)

• Look at the following graphs to understand the meaning of infinite limits

$$\lim_{x \to a^{+}} \frac{1}{x - a} = +\infty$$

$$\lim_{x \to a^{-}} \frac{1}{x - a} = -\infty$$

$$\lim_{x \to a} \frac{1}{(x-a)^2} = +\infty$$

$$\lim_{x \to a} -\frac{1}{(x-a)^2} = -\infty$$

See class discussion & explanation

Computing infinite limits $\lim_{x\to a} f(x)$

i.e. the answer is ∞ or $-\infty$

This generally happens when directly substituting x = a gives $\left(\frac{k}{0}\right)$ form $(k \neq 0)$

Trick

Look at the sign and get the answer as ∞ or $-\infty$

Note usefulness of factorization

See examples 4, 5, 6, 7 done in class

when

Vertical Asymptotes

• Look at the following graphs again.

$$\lim_{x \to a^+} \frac{1}{x - a} = +\infty$$

$$\lim_{x \to a^-} \frac{1}{x - a} = -\infty$$

$$\lim_{x \to a} \frac{1}{(x-a)^2} = +\infty$$

$$\lim_{x \to a} -\frac{1}{(x-a)^2} = -\infty$$

What's special about line x=a

What happens to graph when we get near the value x=a

It runs (very close &) parallel to graph up to $\pm \infty$

The graph either shoots up to ∞ or shoots down to $-\infty$

A vertical line x = a is called vertical asymptote of graph of f(x) if one of the following is true

- $\lim_{x \to a^{-}} f(x) = \infty \text{ or } -\infty$
- $\lim_{x \to a^+} f(x) = \infty \text{ or } -\infty$
- $\lim_{x \to a} f(x) = \infty \text{ or } -\infty$

Special situation for rational functions

Vertical asymptotes for $f(x) = \frac{P(x)}{Q(x)}$

• x = a is a vertical asymptote if

$$Q(a) = 0$$
 and $P(a) \neq 0$

But it is better to compute limits to get complete idea of the situation

Note

usefulness of factorization

See examples 8, 9 done in class