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ABSTRACT

In the paper a modification of the branching stochastic process with im-
migration and with continuous states, introduced by Adke and Gadag [1]
will be considered. Theorems establishing a relationship of this process with
Bienaymé − Galton −Watson processes will be proved. It will be demon-
strated that limit theorems for the new process can be deduced from those for
simple processes with time-dependent immigration, assuming that process is
critical and offspring variance is finite.
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1. INTRODUCTION

We consider a modification of the branching stochastic process which
has a continuous space of states. It is convenient to define the process as
a family of nonnegative random variables describing the amount of a prod-
uct produced by individuals of some population. The initial state of the
process is given by a nonnegative random variable X0 . The amount of the
product X1 of the first generation is defined as the sum of random products
produced by N1(X0) individuals and the product U1 of immigrating to the
first generation individuals. Similarly the amount X2 of the product of the
second generation is defined as the sum of products produced by N2(X1)
individuals and U2 , and so on. Here Nk(t), k ≥ 1, t ∈ T, are counting
processes with independent stationary increments, T is either R+ = [0,∞)
or Z+ = {0, 1, 2, ...} and Uk, k ≥ 1, are non-negative random variables. We
also assume that processes Nn(t), n ≥ 1, t ∈ T have common one dimensional
distributions. This process allow to model situations, when it is difficult to
count the number of individuals in the population, but some non-negative
characteristic, such as volume, weight or product produced by the individu-
als can be measured.This modification of branching processes was introduced
by Adke and Gadag (1995), who indicated relationship of this model with
problems related to non-Gaussian Markov time series, to single server queue
models and to other problems.

Investigation of branching processes with continuous state space has a
long history. This kind processes were first introduced by Feller [5] who
studied a class of one dimensional diffusions obtained by a passage to the
limit from the Bienaymé − Galton − Watson (BGW) processes. At the
end of fifties M. Jirina [9], [10] defined a branching stochastic process with
continuous-state space as a homogeneous Markov process the transition prob-
abilities of which satisfy a ”branching condition”. The continuous-state
branching process with immigration was considered by Kawazu and Watan-
abe [11]. Since then investigations of various models of the branching process
with continuous states have been active area of the research. We just note
most recent publications by Zeng [16], Lambert [12] and Duquesne [4], where
genealogical trees associated with continuous-state branching processes are
considered. Additional references in this direction can be found in Athreya
and Ney [2].

In the case, when X0 and Uk, k ≥ 1, are integer-valued, the process Xn can
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be considered as a special case of a controlled branching process introduced
first by Sevastyanov and Zubkov [14] and by Yanev [15] , for random control
functions. In fact, if we choose ϕ1(k, n) = Nk(n) and ϕ2(k, n) ≡ 1 in so
called Model 2 of ϕ- branching process [14], obtain a discrete-state version of
the process Xn. Further investigations of controlled branching processes with
random control functions can be found in [8] and the references wherein.

As distinct from the cited above papers, where the process has been given
by a special form of the Laplace transform, in the process which we are going
to consider the branching property can explicitly be presented using count-
ing process Nn(t). This allowed Adke and Gadag [1] to obtain distributional
properties of the process Xn that are similar to those of classic models. In
particular it was shown that Zn = Nn+1(Xn) is simple BGW process with
time-dependent immigration. The following question is interesting in connec-
tion with this situation. Is it possible to use this similarity in investigation
of asymptotic behavior of the process? In particular can we obtain limit
distributions of Xn directly from known limit theorems for BGW processes?

In this paper we prove certain theorems which establish relationship be-
tween these two processes in a sense of asymptotic behavior. These results
allow us to prove limit theorems for Xn from those of Zn and vice versa.
We demonstrate usefulness of these theorems obtaining limit distributions
for the critical process with time-dependent immigration in cases of linear
and functional normalization. New limit theorems for critical processes Xn

with finite variance of offspring distribution will be proved when immigration
rate decreases depending the time of immigration and also when it satisfies
Foster-Williamson condition of weak stability. In further publications we
will demonstrate applicability of these duality theorems when offspring vari-
ance is not finite, to subcritical and supercritical processes and to processes
without immigration.

Hence considered here continuous-state process can be treated by tradi-
tional for the theory of branching processes technique, while it may serve to
model continuously varying branching populations as the more complicated
Jirina or Kawazu-Watanabe processes.

2. TWO DUALITY RESULTS

We now give a detailed definition of the process which we are going to
consider. Let {Win, i, n ≥ 1} be a double array of independent and identically
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distributed non-negative random variables, {Nn(t), t ∈ T, n ≥ 1} be a family
of nonnegative, integer-valued independent processes with independent sta-
tionary increments, with Nn(0) = 0 almost surely, T is either R+ = [0,∞)
or Z+ = {0, 1, ...}.

We define a new process Xn, n ≥ 0, as following. Let the initial state of
the process be X0 which is an arbitrary non-negative random variable and
for n ≥ 0

Xn+1 =
Nn+1(Xn)∑

i=1

Win+1 + Un+1, (1)

where {Un, n ≥ 1} is a sequence of independent non-negative random vari-
ables. Assume that families of random variables {Win, i, n ≥ 1}, {Un, n ≥ 1}
of stochastic processes {Nn(t), t ∈ T, n ≥ 1} and random variable X0 are
independent.

It is shown in [1] that Zn = Nn(Xn−1) is a BGW process with an immi-
gration component. We now provide a result establishing relationship, in a
sense of limiting behavior, between processes Xn and Zn. In order to do that
we use the following Laplace transforms

G(λ) = Ee−λWin , Hn(λ) = Ee−λUn .

We also denote

∆(n) =
P{Zn > 0}
P{Xn > 0} , δ(n, λ) =

1−Hn(λ)

P{Zn > 0} .

Let the sequences of positive numbers {k(n), n ≥ 1} and {a(n), n ≥ 1}
be such that k(n), a(n) →∞ and for each λ > 0 there exists

lim
n→∞ k(n)(1−G(

λ

a(n)
)) = b(λ) ∈ (0,∞). (2)

Existence of these sequences follows from monotonicity of the Laplace trans-
form G(λ). In fact one may choose

a(n) =
λ

G−1(1− b(λ)
k(n)

)

for a given sequence k(n), where G−1 stands for the inverse of G(λ).
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Theorem 1. Let ∆(n) → 1, n → ∞ and δ(n, λ/a(n)) → 0 for each λ > 0
as n →∞. Then as n →∞

E[e−λXn/a(n)|Xn > 0] → φ(b(λ)) (3)

for each λ > 0, if and only if as n →∞ for each λ > 0

E[eλZn/k(n)|Zn > 0] → φ(λ). (4)

Proof. We consider the following obvious identity

E[e−λXn |Xn > 0] = 1− 1− Ee−λXn

P{Xn > 0} . (5)

It follows from definition (1) of the process Xn by total probability arguments
that

Ee−λXn = Hn(λ)EGZn(λ). (6)

We obtain from (6) that

1− Ee−λXn = (1−Hn(λ))EGZn(λ) + 1− EGZn(λ).

Thus making use of (5)

1− Ee−λXn

P{Zn > 0} = 1− E[GZn(λ)|Zn > 0] + δ(n, λ)E[GZn(λ)].

Hence the ratio on the right side of (5) equals

∆(n)
1− Ee−λXn

P{Zn > 0} = −∆(n)E[GZn(λ)|Zn > 0] + ∆(n)[1 + δ(n, λ)EGZn(λ)].

If we use this in relation (5) we obtain

E[e−λXn |Xn > 0] = ∆(n)E[GZn(λ)|Zn > 0] + ε(n), (7)

where
ε(n) = 1−∆(n)(1 + δ(n, λ))E[GZn(λ)].

Let (4) be satisfied for every λ > 0. Then, it clearly follows from con-
tinuity of the Laplace transform ϕ(λ), that the convergence in (4) holds
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uniformly with respect to λ in an arbitrary finite interval. Since ln x =
−(1− x) + o(1− x), x → 1, we obtain from condition (2) that as n →∞

tn = −k(n) ln G(
λ

a(n)
) → b(λ). (8)

Therefore for each fixed λ > 0 there is such a T = T (λ), that 0 < tn ≤ T for
any n = 1, 2, ... Replacing λ by λ/a(n) and using (8) we have

E[GZn(
λ

a(n)
)|Zn > 0] = E[e−tnZn/k(n)|Zn > 0]. (9)

We show that the Laplace transform (9) as n → ∞ approaches ϕ(b(λ)). In
order to do this we consider the following relation:

E[GZn(
λ

a(n)
)|Zn > 0]− ϕ(b(λ)) = I1 + I2, (10)

where

I1 = E[e−tnZn/k(n)|Zn > 0]− ϕ(tn), I2 = ϕ(tn)− ϕ(b(λ)).

It follows from (4), due to the uniform convergence, that

|I1| ≤ sup
0<tn<T

|E[e−tnZn/k(n)|Zn > 0]− ϕ(tn)| → 0 (11)

as n → ∞. On the other hand I2 → 0 as n → ∞ due to continuity of the
Laplace transform ϕ(λ), for λ > 0. Thus we conclude that as n →∞

E[GZn(
λ

a(n)
)|Zn > 0] → ϕ(b(λ)). (12)

Since ∆(n) → 1 and δ(n, λ
a(n)

) → 0 as n → ∞, we obtain that ε(n) → 0 as

n →∞. The assertion (3) now follows from relations (7) and (12). The first
part of Theorem 1 is proved.

Let now (3) hold. Recall that tn = −k(n) ln G( λ
a(n)

). It follows from

condition (2) that τn = tn/b(λ) → 1 as n →∞ for each λ > 0. We consider
the following Laplace transform:

E[e−Znb(λ)τn/k(n)|Zn > 0] = E[GZn(
λ

a(n)
)|Zn > 0]. (13)
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It follows from relations (3), (7) and (13), due to continuity of ϕ(λ), that

lim
n→∞E[e−Znb(λ)τn/k(n)|Zn > 0] = ϕ(b(λ)). (14)

Due to continuity theorem for Laplace transforms (14) means that

{
Znτn

k(n)
|Zn > 0

}
D→ ξ

as n →∞, with Ee−λξ = ϕ(λ). Since τn → 1, n →∞, we have that Zn/k(n)
given Zn > 0, as n → ∞ converges to ξ in distribution. If we write this in
terms of Laplace transforms, we obtain (4). Theorem 1 is proved completely.

Now we obtain a similar duality result for unconditional distributions of
processes Zn and Xn. It will also be formulated it terms of Laplace trans-
forms.

Theorem 2. Let for sequences {a(n), n ≥ 1} and {k(n), n ≥ 1} condition
(2) be satisfied. Then

Ee−λXn/a(n) → ϕ(b(λ)) (15)

if and only if for each λ > 0 as n →∞

Ee−λZn/k(n) → ϕ(λ). (16)

Proof. Now we use equation (6) directly. Let (16) be satisfied for each λ > 0.
Then it holds uniformly with respect to λ > 0 from each finite interval. Again
taking into account relation (9) we can partition E[GZn(λ/a(n))] − ϕ(b(λ))
into I1 + I2 and, as in the proof of Theorem 1, show that both I1 and I2

approach zero as n →∞. This leads assertion of (15) due to relation (6).
The proof of the necessity of (16) for (15) is similar to the proof of the

second part of previous theorem. One just needs to consider unconditional
Laplace transforms instead of conditional ones. Theorem 2 is proved.

Now we turn our attention to some applications of proved theorems. In
order to do it we need explicit formulas for moments of offspring and immi-
gration distributions of the process Zn.
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3. OFFSPRING AND IMMIGRATION MOMENTS

As it was indicated before process Zn = Nn(Xn−1) is a BGW process with
immigration. The offspring distribution and the distribution of the num-
ber of immigrating masses have Laplace transforms G(f(λ)) = Ee−λξn and
Hn(f(λ)) = Ee−ληn , respectively (see [1]). Here ξn = Nn(Wn−1), ηn =
Nn(Un−1) and f(λ) = − log Ee−λNn(1).

We obtain the moments of offspring and immigration distributions by
standard arguments. It is easy to see that

m = Eξn = − d

dλ
G(f(λ))λ=0 = EWEN,

where N = N1(1),W = W1. Similarly

α(n) = Eηn = − d

dλ
Hn(f(λ))λ=0 = EUnEN.

Since

d2

df2
G(f(λ)) =

d2

df 2
G(f(λ))

{
df(λ)

dλ

}2

+
d

df
G(f(λ))

d2f(λ)

dλ2
,

we obtain

Eξ2
n =

d2G(f(λ))

dλ2 λ=0
= EW 2(EN)2 + EWV arN

One of the important parameters in the theory of usual branching processes
is the factorial moment of the offspring distribution B = Eξn(ξn − 1). We
obtain from the above that

B = EW [V arN − EN ] + EW 2(EN)2.

In particular when Eξn = 1 (the critical case) we have

B = EWV arN + (EN)2V arW.

By similar arguments we obtain that

Eη2
n = EUnV arN + EU2

n(EN)2

and for the factorial moment β(n) = Eηn(ηn − 1) we have

β(n) = (EN)2EUn(Un − 1) + EN(N − 1)EUn
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4. A FOSTER-WILLIAMSON TYPE THEOREM

Here we consider applicability of Theorem 2 to obtain a version of well known
result by Foster and Williamson (1971). They assume convergence in distri-
bution of the normalized immigration process (the partial sum of the number
of immigrating individuals) to a random variable ξ. Since ξ is nonnegative
and has an infinitely divisible distribution its Laplace transform has the form
(see Feller [6], page 426)

Ee−λξ = exp

{
−

∫ ∞

0

1− e−λx

x
dP (x)

}
,

where P (x) is a measure such that
∫∞
0 x−1dP (x) < ∞. First we state the

theorem for the process Zn from [7].

Theorem A. If m = 1, B ∈ (0,∞) and

1

n

n∑

k=1

Nk(Uk−1)
D→ ξ, (17)

then Zn/n
D→ W , with

EeλW = exp

{
−

∫ ∞

0

1− e−λx

x
dQ(x)

}
,

where Q(x) = R ∗ P (x), R(x) = 1− exp{−2x/B}.
Now we formulate Foster-Williamson type result for process Xn. It is nat-

ural that the condition on immigration must be given in terms of {Uk, k ≥ 1}
the ”immigrating mass”.

Theorem 3. If m = 1, B ∈ (0,∞) and

EN

n

n∑

k=1

Uk
D→ ξ, (18)

then Xn/n
D→ X, with

EeλX = exp

{
−

∫ ∞

0

1− e−λxEW

x
dQ(x)

}
,
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and Q(x) is the same as in Theorem A.

Proof First we show that, if condition (18) is fulfilled, then (17) holds. In
fact, in terms of Laplace transforms (18) is

n∏

k=1

Hk(
λEN

n
) → Ee−λξ. (19)

If we denote the sum in (17) by Sn, we have

Ee−λSn/n =
n∏

k=1

Hk(f(
λ

n
)).

Using relation log x = −(1− x) + o(1− x), x ↓ 1, we obtain that

nf(
λ

n
) = −n log Ee−λN/n ∼ n(1− Ee−λN/n) ∼ λEN

as n → ∞. Thus, due to continuity of the Laplace transform, we conclude
that

n∏

k=1

Hk(f(
λ

n
)) ∼

n∏

k=1

Hk(
λEN

n
)

and this together with (19) gives (17).
It follows from the above that, if condition (18) is satisfied, then Theorem

A holds, i. e. Zn/n
D→ W,n → ∞. This can be written in terms of Laplace

transforms as Ee−λZn/n → Ee−λW , n → ∞. Now we appeal to Theorem 2.
If we choose k(n) = a(n) = n, then as n →∞

n(1−G(
λ

n
)) → λEW.

Thus condition (2) is fulfilled with b(λ) = λEW . The assertion of Theorem
3 now follows from Theorem 2.

Example. Let the immigration process be stationary, i.e. {Uk, k ≥ 1}
have a common distribution and a = EUk is finite. Then, due to weak law of
large numbers, condition (18) is satisfied with ξ = aEN . Thus the Laplace
transform of ξ is e−λaEN . From equality

λaEN =
∫ ∞

0

1− e−λx

x
dP (x)
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we obtain that measure P (x) has only one atom of mass aEN at x = 0.
Therefore Q(x) = P ∗ R(x) = a(1 − e−2x/B). From here denoting ψ(λ) =
− log Ee−λX we have

ψ(λ) =
2aEN

B

∫ ∞

0

1− e−λxEN

x
e−2x/Bdx,

consequently
d

dλ
ψ(λ) =

aENEW

1 + BEWλ/2
.

By integration we obtain from the last equation that ψ(λ) = 2aEN
B

log(1 +
λBEW/2). We can see that in this case the limit distribution in Theorem 3
is gamma.

Corollary. If m = 1, B ∈ (0,∞) and immigration is stationary with a =
EUk < ∞, then Xn/n as n →∞ has a gamma limit distribution with density
function

1

Γ(2aE(N)
B

)

(
2

E(W )B

) 2aE(N)
B

x
2aE(N)

B
−1e−

2x
E(W )B .

5. THE PROBABILITY OF NON EXTINCTION

In the case of stationary immigration P{Xn 6= 0} approaches 1 as n → ∞.
However, if the immigration rate depends on the environment, this probabil-
ity may approach to any number between 0 and 1 inclusively. Moreover, the
asymptotic behavior of the process strongly depends on the behavior of this
probability. Here we provide some results for P{Xn 6= 0} in the case when
the immigration rate approaches zero as n →∞.

Let γ(n) = EUn < ∞ for each n ≥ 1, regularly varies when n → ∞
and EW,EN, α(n) and β(n) are finite for each n ≥ 1. From now on we also
assume that

P{Un > 0} = O(γ(n)), n →∞.

Theorem 4. Let m = 1, B ∈ (0,∞) and γ(n) → 0, n →∞. Then
a) If γ(n) log n →∞, then P{Xn 6= 0} → 1;
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b) If γ(n) log n → 0, β(n) → 0, then P{Xn 6= 0} → 0;
c) If γ(n) log n → C ∈ (0,∞), then P{Xn 6= 0} → 1− exp(−2CEN/B).

It is clear that when γ(n) approaches zero ”faster” than (log n)−1, the
probability of non extinction may tend to zero arbitrarily. Next theorem gives
the asymptotic behavior of that probability, which essentially determine the
form of limit distribution of the process. We introduce two functions which
are important in further considerations. Let

Q1(n) =
2EN

B
γ(n) log n, Q2(n) =

2EN

Bn

n∑

k=1

γ(k).

Theorem 5. If m = 1, B ∈ (0,∞), γ(n) log n → 0 and β(n) = o(Q1(n) +
Q2(n)), then as n →∞

P{Xn 6= 0} ∼ Q1(n) + Q2(n).

Examples. We consider some examples of possible asymptotic behavior of
P{Xn 6= 0}. Let γ(n) = C1/n

θ.
a) If θ < 1, then

∑n
k=1 γ(k) ∼ const n1−θ and P{Xn 6= 0} ∼ Q1(n).

b) If θ > 1, then
∑n

k=1 γ(k) < ∞ and P{Xn 6= 0} ∼ Q2(n).
c) If θ = 1, then Q1(n) ∼ Q2(n) and P{Xn 6= 0} ∼ 2Q1(n).

Proof of Theorem 4. If we let λ →∞ in relation (6), we have

P{Xn = 0} = P{Un = 0})Ψ(n, P0), (20)

where P0 = P{Win = 0}, Ψ(n, s) = EsZn , 0 ≤ s ≤ 1. Since γ(n) → 0, and
P{Un > 0} = O(γ(n)), n → ∞, when P0 = 0 we trivially obtain from (20)
that P{Xn = 0} ∼ P{Zn = 0}. Assume that 0 < P0 < 1. We use the
following probability generating functions of ξn and ηn instead of Laplace
transforms introduced in Section 3:

g(s) = G(f(− log s)), hn(s) = Hn(f(− log s))

for 0 ≤ s ≤ 1. It is well known that Ψ(n, s) can be represented as

Ψ(n, s) =
n∏

k=0

hk(gn−k(s)), (21)

12



where gn(s) is nth functional iteration of g(s) (see [3], for example). It
is clear that gn(s) is the generating function of the BGW process without
immigration and, when m = 1, B ∈ (0,∞),

1− gn(s) ∼ 1
1

1−s
+ Bn

2

(22)

as n → ∞ for each 0 < s < 1 (see [13], page 74). From here we conclude
that 1 − gn(P0) ∼ 1 − gn(0), n → ∞. Consequently, taking this fact into
account in (21), we obtain that P{Zn = 0} ∼ Ψ(n, P0) as n → ∞ for each
0 ≤ P0 < 1. Now the assertion of Theorem 4 follows from Lemma 3.1.1 in
[13] (page 110), where asymptotic behavior of Zn is studied in more general
situation.

Proof of Theorem 5. We obtain from equation (20) the following relation

P{Xn 6= 0} = 1−Ψ(n, P0) + P{Un > 0}Ψ(n, P0). (23)

The same arguments as in the proof of previous theorem give that 1 −
Ψ(n, P0) ∼ P{Zn 6= 0} as n → ∞. It follows from Theorem 3.1.1 in men-
tioned above monograph [13] (page 108) that, when conditions of Theorem
5 are fulfilled,

P{Zn 6= 0} ∼ Q1(n) + Q2(n). (24)

Now we consider the second summand on the right side of (23). Taking into
account assumption P{Un > 0} = O(γ(n)) we see that it is sufficient to show
as n →∞

γ(n) = o(Q1(n) + Q2(n)). (25)

Let first Q2(n) = o(Q1(n)). In this case clearly obtain that γ(n) = o(Q1(n)).
If Q1(n) = o(Q2(n)), then γ(n) log n = o(Q2(n)) and consequently γ(n) =
o(Q2(n)). When Q1(n) ∼ const Q2(n) we have Q1(n)+Q2(n) ∼ const γ(n) log n
and we can see again that relation (25) holds. Thus the assertion of the the-
orem follows from relations (23), (24) and (25).

Theorems 4 and 5 will be used in next section, where various limit distri-
butions for process Xn will be derived. However these results are of indepen-
dent interest as well. In particular Theorem 5 shows that event {Xn 6= 0}
may occur, roughly speaking, either because of descendants of ”recent im-
migrants” or because of the individuals immigrated in the beginning of the
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process. For explanation of this phenomenon we refer to [13].

6. LIMIT DISTRIBUTIONS

In this section we obtain limit distributions for process Xn, when the immi-
gration mean approaches to zero from generation to generation. We denote

a =
2EN

B
,∇(n) =

2α(n)

B
.

Theorem 6. If m = 1, B ∈ (0,∞), β(n) → 0 and γ(n) → 0 such that
γ(n) log n →∞, then

lim
n→∞P{(Xn

n
)γ(n) ≤ x} = xa, 0 ≤ x ≤ 1.

If γ(n) log n → C, it follows from Theorem 4 that process Xn may ex-
tinct with positive probability. Therefore in this case we consider conditional
process Xn, given Xn > 0.

Theorem 7.If m = 1, B ∈ (0,∞) and γ(n) log n → C ∈ (0,∞), then

lim
n→∞P{(Xn)γ(n) ≤ x|Xn > 0} =

xa − 1

eaC − 1
, 1 ≤ x ≤ eC .

When γ(n) log n → 0, the form of the limit distribution depends on the
behavior of function θ(n) = Q1(n)/Q2(n).

Theorem 8. If m = 1, B ∈ (0,∞), γ(n) log n → 0, β(n) = o(Q1(n)) and
θ(n) →∞, then

lim
n→∞P{ log Xn

log n
≤ x|Xn > 0} = x, 0 ≤ x ≤ 1.

Theorem 9. If m = 1, B ∈ (0,∞), γ(n) log n → 0, β(n) = o(Q1(n)) and
θ(n) → 0, then

lim
n→∞P{2Xn

Bn
≤ x|Xn > 0} = 1− e−x, x ≥ 0.
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When θ(n) has a positive finite limit we obtain two essentially different
limit distributions having atoms.

Theorem 10. If m = 1, B ∈ (0,∞), γ(n) log n → 0, β(n) = o(Q1(n)) and
θ(n) → θ ∈ (0,∞), then

a) lim
n→∞P{ log Xn

log n
≤ x|Xn > 0} =

xθ

1 + θ
, 0 ≤ x ≤ 1.

b) lim
n→∞P{2Xn

Bn
≤ x|Xn > 0} =

θ + 1− e−x

1 + θ
, x ≥ 0.

It is not difficult to see that limit distribution in part a) of last theorem
has an atom of the mass (1 − θ)−1 at point x = 1 and limit distribution in
part b) has an atom of the mass θ(1 + θ)−1 at point x = 0.

Proof of Theorem 6. We use the following result proved in [3] for the
BGW processes.

Theorem B. If m = 1, B ∈ (0,∞), α(n), β(n) → 0 and α(n) log n → ∞,
then as n →∞

P{(Zn

n
)∇(n) ≤ x} → x,

where 0 ≤ x ≤ 1.

Since ∇(n) → 0, we obtain from Theorem B that for any fixed 0 < y < ∞
as n →∞

P{(Zn

yn
)∇(n) ≤ x} → x.

This can be written as following

Zn

nx1/∇(n)

D→ ξ

as n →∞ with P{ξ = 0} = x = 1− P{ξ = ∞} and consequently

E exp{− λZn

nx1/∇(n)
} → Ee−λξ = x. (26)
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Now we appeal to Theorem 2. Relation (26) shows that condition (16) is
satisfied with k(n) = nx1/∇(n). If we choose a(n) = k(n), then as n →∞

k(n)(1−G(
λ

a(n)
)) → λEW.

Thus condition (2) is fulfilled b(λ) = λEW . Therefore due to Theorem 2 as
n →∞

Ee−λXn/k(n) → Ee−ξλEW = x. (27)

We get the assertion of Theorem 6, if we write relation (27) in terms of the
cumulative distribution function. Theorem 6 is proved.

Proof of Theorem 7. We use the following result from [3].

Theorem C. If m = 1, B ∈ (0,∞), and α(n) log n → C ∈ (0,∞), then as
n →∞

P{(Zn)∇(n) − 1

e2C/B − 1
≤ x|Zn > 0} → x,

where 0 ≤ x ≤ 1.

Theorem C gives that, if α(n) log n → C, then {Zn/k(n)|Zn > 0} → ξ in
distribution as n → ∞, where ξ has the same distribution that in proof of
previous theorem and

k(n) = [x(eaC − 1) + 1]1/∇(n).

Note here that k(n) →∞ when n →∞. Therefore

E[e−λZn/k(n)|Zn > 0] → Ee−λξ = x

and condition (4) of Theorem 1 is satisfied. If we choose again a(n) = k(n),
we can easily see that condition (2) is also fulfilled with b(λ) = λEW .

We need to show that ∆(n) → 1 as n → ∞. We obtain from Theorem
4 that P{Xn > 0} → 1 − e−aC when γ(n) log n → C, n → ∞. On the other
hand Lemma 3.1.1 in [15, page 110] gives that P{Zn > 0} → 1−e−2C/B when
α(n) log n → C, n →∞. From these two results we conclude that ∆(n) → 1
as n → ∞. Since a(n) → ∞ and P{Zn > 0} has a positive limit, we easily
see that δ(n, λ/a(n)) → 0 as n →∞ for each λ > 0. Hence all conditions of
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Theorem 1 are satisfied and consequently {Xn/k(n)|Xn > 0} → ξ in distri-
bution as n →∞. From here we obtain the assertion of Theorem 7.

Proofs of theorems 8-10 are similar to the proof of Theorem 7. Namely we
show that conditions of Theorem 1 are fulfilled. This allows us to get the
assertions of those theorems from limit theorems for the BGW process.

CONCLUDING REMARKS

Results obtained in this paper allow us to make the following conclusions.
The asymptotic behavior of the process with continuous state space is similar
to that of simple processes. Limit distributions for the new process can be
obtained from corresponding limit theorems for BGW processes. In the case
of conditional limit theorems one needs to check that the non-extinction
probability for these two models have the same asymptotic behavior. The
later is usually true when some quite natural assumptions are satisfied. The
proofs of limit theorems consist of verifying conditions of the duality theorems
proved in Section 2 of the paper.
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