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Abstract

At event times of a Poisson process a tribe of individuals enters a
region where they sojourn for a random time according to a continuous
time Markov branching process, and then emigrate from the region
collectively. Conditions for the limit of the probability that the region
contains at least one individual to be zero, one and a positive number
less than one are provided in the critical case when the distribution
of the size of immigrating tribe depends on the time of immigration.
Limit distributions for the size of population in the region are also
obtained.
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1 Introduction

We consider a family of independent, identically distributed and continuous
time Markov branching processes. In a region < let there be individuals of
a single type. Each individual existing at a given moment, independently
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of the fate of the other individuals, is transformed into k individuals with
probability δk1 + pk∆t + o(∆t) in time ∆t → 0. Here δk1 = 0, k 6= 1 and
δ11 = 1. We assume that

p1 < 0, pk ≥ 0, k 6= 1,
∑

k≥0

pk = 0

and denote by Z(t) the number of individuals at time t given Z(0) = 1. We
suppose Ai founders (immigrants) arrive in < at a random time Ti, i = 1, 2, . . .
Each of these founders initiates a family, that is, generates a continuous time
Markov branching process with the same infinitesimal probabilities {pk, k ≥
0}. The Ai founders arriving at time Ti collectively initiate a tribe which
sojourns in < for a time σi and then emigrates.

If we enumerate simultaneously arriving founders by 1, 2, ..., then the
pair (i, j) corresponds to the j-th founder arriving at time Ti. We shall
call the branching process initiated by founder (i, j) as “(i, j)-process”. Let
{Zij(t), i, j ≥ 1} be the family of all possible (i, j)-processes. We assume
that these processes are independent and identically distributed such that

Zij(t)
d
= Z(t) for any i, j ≥ 1. This means that processes Zij(t) have the

same infinitesimal probabilities pk, k ≥ 0. We define the process W (t) by the
relation

W (t) =
N(t)∑

i=1

Ai∑

j=1

Zij(t− Ti)I{σi > t− Ti}, (1)

where N(t) = #{i : Ti ≤ t}, I{A} is the indicator of the event A. We assume
that the sojourn times σi are i.i.d. non-negative random variables and are
independent of the immigration and family components, Ai, i = 1, 2, . . . , are
independent random variables taking values 0, 1, . . . and are also independent
of the other components of the process. The W (t) is the size of the population
in < at time t.

Note that since the indicator in (1) does not depend on j, the emigration
of the tribe will occur collectively. In the case of family emigration, that
is, when each family generated by a founder emigrates independently of the
others, the process can be defined by a similar formula. In this case each (i, j)-
process describing the evolution of a family has its sojourn time depending
on i and j.
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Immigration-birth-death-emigration processes with exponentially distributed
sojourn times, N(t) a Poisson process and Ai ≡ 1, were considered by Tessera
(1984). Later, A. Pakes (1986) introduced a more general model where a
random number of founders enters < at the i-th event time Ti of a renewal
process and generates i.i.d. Bellman-Harris processes. Considering the case
of stationary immigration (i.e. Ai, i ≥ 1, are i.i.d.), A. Pakes has obtained
some sufficient or sufficient and necessary conditions of existence of a limiting
distribution for the process W (t) and has proved several limit theorems for
the normalized process. The model introduced by Pakes is a contribution to
the work on population processes with mass emigration or catastrophes some
of which is reviewed by Brockwell (1985). An example of a general branching
process with reproduction-dependent immigration and family emigration is
considered by Rahimov (1992).

In this paper we shall consider the case of non-stationary immigration,
that is, the random number of founders Ai, i ≥ 1, which enters < at the
i-th event time Ti of a Poisson process are not identically distributed. More
exactly, assuming that EAi → 0 as i → ∞, we shall study the asymptotic
behavior of the probability P{W (t) > 0} as t → ∞ and shall prove some
new limit theorems for the normalized size of the population in <.

2 The probability of non-extinction

First we consider the “non-extinction” probability of the process W (t). Let
R(t, S) be the probability generating function of the process W (t). By the
same arguments as Pakes (1986), we obtain under our assumptions the fol-
lowing relation:

R(t, S) = exp{− 1

λ0

∫ t

0
(1− h(u, F (t− u, S)))τ(t− u)du}, (2)

where
τ(t) = 1− P{σi ≤ t}, F (t, S) = E[SZij(t) | Zij(0) = 1],

λ0 = E[Ti+1 − Ti], h(t, S) = E[SAi | Ti ∈ [t, t + ∆t)], ∆t → 0.

It is known, Sevastyanov (1971), that the generating function F (t, S) of the
continuous time Markov branching process satisfies the following partial dif-

3



ferential equation:

∂F (t, S)

∂t
= f(F (t, S)), F (0, S) = S. (3)

Here

f(S) =
∞∑

k=0

pkS
k, f(1) = 0

is the generating function of the infinitesimal probabilities. Assume further
that a = f ′(1) and b = f (2)(1) are finite and

α0 = sup
t

α(t) < ∞, β0 = sup
t

β(t) < ∞, (4)

where

α(t) =
∂h(t, S)

∂S
|S=1, β(t) =

∂2h(t, S)

∂S2
|S=1 .

In addition we assume that α(t) is a regularly varying function, that is,
it can be written as

α(t) =
l(t)

tα
, α ≥ 0, t > 0, (5)

and l(t) varies slowly as t → ∞. Let us define the function b(t) by the
relation

b(t) =
∫ t

0
(1− F (u, 0))τ(u)du.

Since t(1− F (t, 0)) is bounded, under the condition b ∈ (0,∞) we have

b′(t)t
b(t)

→ 0, t →∞. (6)

It follows from (6) that b(t) is a slowly varying function as t → ∞ (Seneta
(1976)). Now we shall prove the following theorem.

Theorem 1 Let a = 0, b ∈ (0,∞) and α(t) → 0 as t →∞.
a) If α(t)b(t) →∞, t →∞, then

lim
t→∞P{W (t) > 0} = 1;

b) if α(t)b(t) → C and β(t) → 0, t →∞, then

lim
t→∞P{W (t) > 0} = 1− exp{−C

λ0

};
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c) if α(t)b(t) → 0, β(t) → 0, t →∞, then

lim
t→∞P{W (t) > 0} = 0.

Examples. If the distribution of the sojourn times is exponential, then it
is clear that α(t)b(t) → 0. If the distribution has a “heavy tail”, for example,
τ(t) ∼ 1/ ln t, then b(t) ∼ 2

b
ln ln t. In this case the limit of the non-extinction

probability may be either 1 or a positive number less than 1 depending on
the asymptotic behavior of α(t).

Proof. Under condition (4) for any fixed u ∈ [0,∞), we have the follow-
ing expansion for the generating function h(u, S):

1− h(u, S) = α(t)(1− S)− 1

2
β̄(u, S)(1− S)2, (7)

where | β̄(u, S) |≤ β(u), | S |≤ 1. Let us consider the case a). Since
b(t) slowly varies and α(t)b(t) → ∞, therefore α(t)is also a slowly varying
function.

Further, as is known, a slowly varying function α(x) admits the following
representation

α(x) = C1(x) exp{
∫ x

d

ε(u)

u
du}, (8)

where d > 0, C1(x) → C1 > 0 and ε(x) → 0as x →∞ (see Seneta (1976)).
From representation (8) it follows that for any slowly varying function

α(t), there is a function λα(t) →∞, t →∞, such that

lim
t→∞

α(t/λ(t))

α(t)
= 1 (9)

for any function λ(t) →∞, 1 ≤ λ(t) ≤ λα(t). Using formulas (2) and (7) we
obtain

ln R(t, 0) = I1 + I2, (10)

where

I1 = − 1

λ0

∫ t

0
α(u)(1− F (t− u, 0))τ(t− u)du,

I2 =
1

2λ0

∫ t

0
β(u, F )(1− F (t− u, 0))2τ(t− u)du (11)
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If we consider the estimate

I1 ≤ − 1

λ0

∫ t

t/λα(t)
α(u)(1− F (t− u, 0))τ(t− u)du,

the integral on the right-hand side is non-greater than const α(t)b(tθt), θt =
1− (λα(t))−1. Since b(t)varies slowly, we have that I1 → −∞as t →∞.

The second summand in (10) is bounded by

lim sup
t→∞

λ−1
0

∫ t

0
β(t− u)(1− F (u, 0))2τ(u)du < ∞.

Therefore P{W (t) = 0} = R(t, 0) → 0 as t →∞. Part a) is proved.
Let us prove part b. In this case we consider

−λ0 ln R(t, 0) = R1 + R2, (12)

where

R1 =
∫ t/λα(t)

0
(1− h(u, F (t− u, 0))τ(t− u)du,

R2 =
∫ t

t/λα(t)
(1− h(u, F (t− u, 0))τ(t− u)du.

Since, for any u ∈ [0,∞) and | S |≤ 1,

| 1− h(u, S) |≤ α(u) | 1− S |, (13)

we have

R1 ≤
∫ t/λα(t)

0
α(u)(1− F (t− u, 0)τ(t− u)du = o(1), t →∞. (14)

Taking into account the choice of λα(t), we can see that as t →∞
∫ t

t/λα(t)
α(u)(1− F (t− u, 0))τ(t− u)du ∼ α(t)b(tθt) ∼ C (15)

with θt = 1− 1/λα(t). On the other hand, if β(t) → 0 as t →∞,

∫ t

t/λα(t)
β(u)(1− F (t− u, 0))2τ(t− u)du → 0, t →∞. (16)
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It follows from the relations (12), (14)-(16) and the formula (7) that

lim
t→∞λ0 ln R(t, 0) = −C. (17)

Part b is proved.
By similar arguments it can be shown that if α(t)b(t) → 0, then the limit

in (17) equals zero. Therefore P{W (t) = 0} → 1as t → ∞. The theorem is
proved.

3 Limit theorems

First we consider the case α(t)b(t) → ∞, t → ∞. If b ∈ (0,∞), it is known
(Sevastyanov, 1971) that

P{Zij(t) > 0} = 1− F (t, 0) ∼ 2

bt
. (18)

We define the function T (x) as follows:

T (x) = exp{
∫ x

t0

τ(u)

u
du}, x ≥ 0, t0 > 0.

It is clear that T (x) is a slowly varying function, since it has the same
form as the Karamata representation of slowly varying functions. It follows
from (18) and the definition of b(t) that

b(t) ∼ 2

b
ln T (t), t →∞. (19)

It will be seen from our further considerations that the process may have
distinct limiting distributions and normalizing functions depending on the
rate of convergence of α(t) to zero. Therefore we introduce the following
classes of processes which are defined by the limiting distribution π(y) and
the normalizing function ϕt(x).

Definition We say that the process X(t) belongs to the class A(ϕt(x), π(y)),
if as t →∞

ϕt(X(t))
d→ X, P{X ≤ y} = π(y).

We obtain the following result in the case when α(t) tends to zero as a
slowly varying function.
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Theorem 2 If a = 0, b ∈ (0,∞), α(t) → 0, α(t)b(t) →∞, then

W (t) ∈ A(ϕt(x), E(y)),

where

ϕt(x) = α(t) ln
T (t)

T (x)

and E(y) is the exponential distribution of the parameter 2λ0/b.

Example. Let the distribution of the sojourn times be such that τ(t) ∼
∆/ ln t, ∆ > 0. It is not difficult to see that in this case

T (x) = [ln x/ ln t0]
∆, ϕt(x) = ∆α(t) ln

ln t

ln x

and we obtain the following corollary from Theorem 1.

Corollary 1. If conditions of Theorem 1 are satisfied and α(t) ln ln t →
∞, then for 0 ≤ x ≤ 1, ∆ > 0

lim
t→∞P{( ln W (t)

ln t
)α(t) ≤ x} = x∆.

Proof of Theorem 2. It follows from the condition α(t)b(t) → ∞ and
(19) that ϕ(x)t →∞ as t →∞ for any fixed x. For any fixed 0 < Z < ∞ we
choose a positive function Ct such that Ct → ∞, Ct < t, for any t ∈ (0,∞)
and ϕt(Ct) → Z, as t →∞.

First we consider the integral

I =
∫ t

0
α(u)(1− F (t− u, S))τ(t− u)du, (20)

where S = St = exp{−θ/Ct}, θ ≥ 0. Let λα(t) be the function which
satisfies (9). Integral (20) can be represented in the form

I = I1 + I2 + I3, (21)

where

I1 =
∫ t/λα

0
α(u)(1− F (t− u, S)τ(t− u)du,

I2 =
∫ Ct

0
α(t− u)(1− F (u, S))τ(u)du,
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I3 =
∫ t−t/λα

Ct

α(t− u)(1− F (u, S))τ(u)du.

Since 1− F (t, 0) is a monotone function, we have that I1 is non-greater
than

τ(tθt)(1− F (tθt, 0))
∫ t/λα(t)

0
α(u)du → 0, t →∞,

where θt = 1 − 1/λα(t). On the other hand, using the inequality 1 −
F (t, S) ≤ 1− S, we obtain the following estimate for the second integral

I2 ≤ α0(1− exp{− θ

Ct

})
∫ Ct

0
τ(u)du → 0 t →∞.

It remains to estimate I3. It is known (see Sevastyanov, 1971) that if
a = 0, b ∈ (0,∞), the generating function F (t, S) can be represented in the
following form:

1− F (t, S) =
1− S

1 + bt
2
(1− S)

(1 + ε(t, S)), (22)

where ε(t, S) → 0 uniformly on | S |< 1 as t → ∞. Since α(t/λ(t)) ∼ α(t)
as t →∞ for any function 1 ≤ λ(t) ≤ λα(t), using (22),the third integral as
t →∞ can be written in the form

I3 = (1 + o(1))
2

b
α(t)[ln

T (θtt)

T (Ct)
−

∫ t−t/λα(t)

Ct

τ(u)

u(1 + bu
2
(1− s))

du].

Taking into account the definition of the functions ϕt(x) and T (x) we obtain
that

α(t) ln
T (θtt)

T (Ct)
= ϕt(Ct)− α(t)

∫ t

t−t/λα(t)

τ(u)

u
du.

On the other hand

∫ t−t/λα(t)

Ct

τ(u)

u(1 + bu
2
(1− S))

du ≤ const τ(Ct).

From these arguments we conclude that

lim
t→∞ I3 =

2Z

b
. (23)
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For any ε > 0 there exists M > 0 such that sup
u>M

τ(u) ≤ ε/2β0. Further,

for any fixed M and sufficiently large t

∫ M

0
(1− F (u, St))

2du <
ε

2β0

.

It follows from these facts that
∫ t

0
β(u)(1− F (t− u, St))τ(u)du < ε

for sufficiently large t. Consequently, the integral on the left-hand side tends
to zero as t →∞. Hence from relations (2), (7) and (23) we have

E exp{−W (t)θ

Ct

} → exp{− 2Z

bλ0

}. (24)

According to the continuity theorem for Laplace transforms, (24) implies

P{W (t) ≤ xCt} → exp{− 2Z

bλ0

} (25)

for any 0 < x < ∞. Putting x = 1 in (25), we have

exp{− 2Z

bλ0

} = lim
t→∞P{W (t) ≤ Ct} =

= lim
t→∞P{ϕt(W (t)) ≥ ϕt(Ct)} = lim

t→∞P{ϕt(W (t)) ≥ Z}.
The theorem is proved.

Now we consider the case α(t)b(t) → C ∈ (0,∞). We assume that
τ(t) = P{σi > t} is a slowly varying function. Let

ϕt(x) =
(T (x))α(t) − 1

(T (t))α(t) − 1
, x ≥ 0,

π(γ, y) =





0 if y < 0

[e−γ + y(1− e−γ)]
2

bλ0 , if 0 ≤ y < 1
1 if y ≥ 1
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Theorem 3 If a = 0, b ∈ (0,∞), α(t) → 0 and α(t)b(t) → C ∈ (0,∞) as
t →∞, then

W (t) ∈ A(ϕt(x), π(
bC

2
, y))

Note that the limiting distribution π( bC
2

, y) has an atom of the mass exp{−C/λ0}
at the point zero. It is clear that the appearance of the atom is caused by
the fact that under the conditions of Theorem 3 the process has a positive
“extinction” probability (see Theorem 1). By the arguments of the proof of
this theorem one may find a limiting distribution that has no atom for the
conditional distribution of the process and for the same normalizing function
ϕt(x).

Proof. Let 0 < θ ≤ 1. We denote

k(t) = T−1((1 + θ(Tα(t)(t)− 1))
1

α(t) ).

It is not difficult to see that for any 0 < θ ≤ 1 function k(t) →∞ as t →∞.
We consider

I =
2

b

∫ t

0
α(u)

τ(t− u)

a(S) + t− u
du (26)

where a(S) = 2/b(1− S), S = exp{−Z/k(t)}, Z ≥ 0.
Let λα(t) be the function which satisfies (9) and ε > 0. We represent (26)

in the following form:
b

2
I = I1 + I2 + I3, (27)

where

I1 =
∫ t/λα(t)

0
α(u)

τ(t− u)

a(S) + t− u
du,

I2 =
∫ r1(t)

a(S)
α(t + a(S)− u)τ(u− a(S))u−1du,

I3 =
∫ r2(t)

r1(t)
α(t + a(S)− u)τ(u− a(S))u−1du,

r1(t) = (1 + ε)a(S), r2(t) = t + a(S)− t/λα(t).

It is clear that I1 is not greater than t−1
∫ t/λα(t)
0 α(u)du and thus tends to

zero as t →∞. On the other hand, since

I2 ≤ α0 log
r1(t)

a(S)
= α0 log(1 + ε),
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the second summand is also arbitrarily small for sufficiently small ε.
In order to estimate I3, we note that

sup
r1(t)≤u≤r2(t)

|τ(u− a(S))

τ(u)
− 1| ≤ sup

r1(t)≤u≤r2(t)
sup

ε
1+ε

≤∆≤1
|τ(u∆)

τ(u)
− 1|

and the last supremum tends to zero as t →∞ according to the uniform con-
vergence theorem for slowly varying functions (see Seneta, 1976). Therefore
as t →∞

I3 = (1 + o(1))α(t)
∫ r2(t)

r1(t)
τ(u)u−1du. (28)

Since T (t) is a slowly varying function and a(S) ∼ 2k(t)/bZ, t →∞, Z > 0,
using the uniform convergence theorem, we have as t →∞

T (r1(t)) ∼ T (a(S)) ∼ T (k(t)), T (r2(t)) ∼ T (t).

Consequently it follows from (28) that

I3 = (1 + o(1))α(t) ln
T (t)

T (k(t))
. (29)

Hence from (27) and (29) we obtain

lim
t→∞ I = −2

b
ln[exp{−bC

2
}+ θ(1− exp{−bC

2
})] (30)

As in the proof of Theorem 2 the integral

∫ t

0
β(u)(1− F (t− u, S))2τ(t− u)du

tends to zero as t →∞ under condition (4) and S = exp{−Z/k(t)}.
Using formulas (2), (7) and (22) and relation (30) we obtain that

lim
t→∞E exp{−ZW (t)

k(t)
} = π(

bC

2
, θ), 0 < θ ≤ 1, z > 0.

Hence we obtain

π(
bC

2
, θ) = lim

t→∞P{W (t) ≤ k(t)} = lim
t→∞P{ϕt(W (t)) ≤ θ}.
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The theorem is proved.
We conclude our discussion with some comments on the asymptotic be-

havior of the expected number of individuals. It is not difficult to find from
(2) by differentiating that

EW (t) =
1

λ0

∫ t

0
α(u)τ(t− u)du. (31)

The last formula shows that the expected number of individuals strictly de-
pends on the distribution of sojourn times. For example it tends to zero, if
the sojourn times are exponentially distributed. If the immigration does not
depend on the time, then it may tend to infinity or to a constant depending
on the behavior of τ(x). Let both α(t) and τ(t) be regularly varying functions
i.e.

α(t) =
l(t)

tα
, α ≥ 0, τ(t) =

L(t)

tδ
, δ ≥ 0, t > 0. (32)

It is clear that EW (t) → 0 if max(α, δ) > 1. In the case α, δ < 1, it may
have a different asymptotic behavior depending on α, δ, l(t) and L(t).

The following theorem gives the exact asymptotic behavior of the expec-
tation in the case α, δ ≥ 0.

Theorem 4 Let a = 0 and α, δ ≥ 0.

a) If 0 < α, δ < 1, then

EW (t) ∼ λ−1
0 B(1− α, 1− δ)α(t)τ(t)t;

b) if at least one of α and δ is greater than or equal to 1, then

EW (t) ∼ λ−1
0 [τ(t)a1(t) + α(t)a2(t)] ,

where B(α, δ) is the β-function and

a1(t) =
∫ t

0
α(u)du, a2(t) =

∫ t

0
τ(u)du.

Remark. It follows from Theorem 4 that if α + δ > 1, then the limit of
the expectation is zero and if α + δ < 1, it tends to infinity. In the case
α + δ = 1, the behavior of EW (t) depends on the slowly varying functions
l(t) and L(t).
Examples. Let the slowly varying functions l(t) and L(t) as t → ∞ have
finite limits C1 and C2 respectively.
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1. In this case if α = δ = 1
2
, then we have

lim
t→∞EW (t) =

C1C2

λ0

B
(

1

2
,
1

2

)
.

2. If α = δ = 1, then

EW (t) ∼ 2C1C2

λ0

· ln t

t
.

3. If α = δ = 1
3
, then

EW (t) ∼ C1C2

λ0

B
(

2

3
,
2

3

)
3
√

t.

Proof of Theorem 4. First we prove part a). Let r1(t) = t/λl(t), r2(t) =
t/λL(t), where λl and λL are functions satisfying (9) for l(t) and L(t) respec-
tively. If we write the integral in (31) as sum of integrals over [0, r1], [r1, t−r2]
and [t− r2, t], then the second integral is equivalent as t →∞ to

l(t)L(t)
∫ t−r2

r1

du

uα(t− u)δ
∼ α(t)τ(t)t B(1− α, 1− δ).

Now we consider the integral over [0, r1]. Let ε > 0 such that α + ε < 1. It
follows from the property of slowly varying functions (Seneta (1976), p. 20)
that as r1 →∞

sup
0≤u≤r1

{uεl(u)} ∼ rε
1l(r1). (33)

Thus for sufficiently large t

∫ r1(t)

0
α(u)τ(t− u)du ≤ const α(t)τ(t)t

[
1

λα(t)

]1−α

.

By similar arguments we obtain that the integral over the third interval has
also order o(α(t)τ(t)t) as t →∞. Part a) of the theorem is proved.

Let us prove part b). Let 0 < α < 1 and δ ≥ 1. In this case a2(x) slowly
varies as x → ∞. If δ > 1 it follows from the convergence of the integral.
Let δ = 1. Since a

′
2(x)x = L(x) and

L(x)

a2(x)
≤ L(x)∫ x

x/λL(x)
τ(u)du

∼ (ln λL(x))−1 , (34)
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we have the relation a
′
2(x)x = o(a2(x)) that shows that a2(x) slowly varies

in the case δ = 1 also. Therefore there is a function r(t) → ∞, r(t) = o(t)
such that a2(r(t)) ∼ a2(t), t →∞. Now we consider

∫ t

0
α(u)τ(t− u)du = I1 + I2 + I3 (35)

where Ii, i = 1, 2, 3 are integrals over the intervals [0, t/λl(t)], [t/λl(t), t −
r(t)] and [t− r(t), t], respectively. It is not difficult to see that

I3 ∼ α(t)a2(r(t)) ∼ α(t)a2(t). (36)

Consider I1. Using the form of τ(t) and the property (33), we obtain that
for some constant C > 0

I2 ≤ Cτ(t)tα(t)

[
1

λl(t)

]1−α

.

In the case δ = 1 we obtain from (34) that τ(t)t = o(a2(t)). If δ > 1, then
τ(t)t = o(1), that is, we have again τ(t)t = o(a2(t)). Thus

I2 = o (α(t)a2(t)) , t →∞. (37)

It follows from the form of α(t) and τ(t) that there is a constant C(α, δ) > 0
such that

inf
t

λl(t)
≤u≤t−r(t)

[
α(t)

α(u)
+

τ(t)

τ(t− u)

]
≥ C(α, δ). (38)

Using this fact we have

I2 ≤ 1

C(α, δ)
[A1 + A2]

where

A1 = α(t)
∫ t−λl(t)

r(t)
τ(u)du = o (α(t)a2(t))

A2(t) ∼ α(t)τ(t)t = o (α(t)a2(t)) .

Thus we have in the case 0 < α < 1 and δ ≥ 1 the expectation EW (t) ∼
λ−1

0 α(t)a2(t). If 0 < δ < 1, α ≥ 1, then repeating the above arguments we
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obtain that EW (t) ∼ λ−1
0 τ(t)a1(t). Let now α = δ = 1. In this case both

a1(t) and a2(t) are slowly varying functions as t → ∞. Therefore there are
functions ri(t) →∞, ri(t) = o(t), i = 1, 2, such that

ai (ri(t)) ∼ ai(t), t →∞, i = 1, 2.

If we partition the interval [0, t] as

[0, t] = E1 ∪ E2 ∪ E3

where E1 = [0, r1] , E2 = [r1, t− r2] , and E3 = [t− r2, t], then the integrals
over E1 and E3 are equivalent to τ(t)a1(t) and α(t)a2(t) respectively. Using
(38) again, we obtain that the integral over E2 has the order o(α(t)a2(t) +
τ(t)a1(t)). The theorem is proved.
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