
Controlled branching processes with
continuous states

I. RAHIMOV ∗and W. AL-SABAH †

King Fahd University of Petroleum and Minerals

Abstract

The controlled branching process with continuous space of states and time-
dependent immigration introduced by Adke and Gadag (1995) is considered.
The control function is a process with independent stationary increments.
Theorems allowing to obtain limit theorems for this model from those of sim-
ple branching processes and vice versa are proved. Applying these results,
limit distributions are obtained for critical processes in the case of decreasing
and increasing rate of immigration when offspring distribution has infinite
variance.

Key Words: counting process, branching process, time-dependent immigra-
tion, independent increment.

Mathematics Subject Classification: Primary 60J80, Secondary 60G99.

∗Postal address: Department of Mathematics and Statistics, KFUPM, Box 1339,
Dhahran 31261, Saudi Arabia; E-mail address: rahimov@kfupm.edu.sa

†Postal address: Department of Mathematics and Statistics, KFUPM, Box 344,
Dhahran 31261, Saudi Arabia; E-mail address: walid@kfupm.edu.sa

1



1 Introduction

We consider a modification of the branching stochastic process which has a
continuous space of states. It is convenient to define the process as a family
of nonnegative random variables describing the amount of a product pro-
duced by individuals of some population. The initial state of the process is
given by a nonnegative random variable X(0) . The amount of the product
X(1) of the first generation is defined as the sum of random products pro-
duced by N1(X(0)) individuals and the product U1 of immigrating to the
first generation individuals. Similarly the amount X(2) of the product of the
second generation is defined as the sum of products produced by N2(X(1))
individuals and U2 , and so on. Here Nk(t), k ≥ 1, t ∈ T, are counting
processes with independent stationary increments, T is either R+ = [0,∞)
or Z+ = {0, 1, 2, ...} and Uk, k ≥ 1, are non-negative random variables. We
also assume that processes Nn(t), n ≥ 1, t ∈ T have common one dimensional
distributions. This modification of branching processes was considered by
Adke and Gadag (1995).

The interest to this modification of the branching processes is connected
with possibility of unified generating various non-Gaussian Markov time se-
ries models, as it was demonstrated in Adke and Gadag (1995). On the other
hand described above process allow to model situations, when it is difficult
to count the number of individuals in the population, but some non-negative
characteristic, such as volume, weight or product produced by the individuals
can be measured.

In the case when X(0) and Uk, k ≥ 1, are integer-valued, the process
X(n) can be considered as a special case of a controlled branching process
introduced first in Sevastyanov and Zubkov (1974) and for random control
functions in Yanev (1975). If we choose ϕ1(k, n) = Nk(n) and ϕ2(k, n) ≡ 1
in so called Model 2 of ϕ- branching process, obtain a discrete-state version
of the process X(n). Further investigations of controlled branching processes
with random control functions can be found in Gonzalez et al. (2005) and
the references therein.

Using of counting processes Nk(t), k ≥ 1 with independent and station-
ary increments in the definition of the process allows to obtain distribu-
tional properties of the process X(n) that are similar to those of classic
models. In particular, it was shown that Z(n) = Nn+1(X(n)) is usual
Bienaymé − Galton −Watson (BGW) process with immigration. The fol-
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lowing question is interesting in connection with this situation. Is it possible
to use this similarity in investigation of asymptotic behavior of the process?
In particular can we obtain limit distributions of X(n) directly from known
limit theorems for BGW processes?

In this paper we prove certain theorems which establish relationship be-
tween these two processes in a sense of asymptotic behavior. These results
allow to get limit theorems for X(n) from those of Z(n) and vice versa. We
also demonstrate possibilities of these theorems in describing of the spec-
trum of limit distributions for critical processes X(n), in the case of time-
dependent immigration and infinite variance of offspring distribution. It will
be seen later that these duality theorems are applicable to subcritical and
supercritical processes and to the processes without immigration.

In Section 2 the duality theorems establishing relationship between processes
X(n) and Z(n) are proved. Section 3 contains results on the first and second
moments and the Laplace transform of the continuous-state process, which
will be used in Sections 5 and 6. Section 4 is devoted to a study of the
non-extinction probability of the process. The results of this section allow
to verify conditions of the duality theorems in applications, though they of
an independent interest as well. Usefulness of theorems of Section 2 in the
case of a linear normalization, which is the case of the stationary immigra-
tion, is obvious. Therefore in Section 5 we demonstrate the applicability of
those theorems in the case of a functional normalization, which appears in
the process with decreasing immigration. In Section 6 we extend results on
the convergence to infinitely divisible and stable distributions of the process
with increasing immigration.

2 Three preliminary theorems

Let {Wni, i, n ≥ 1} be a double array of independent and identically dis-
tributed non-negative random variables, {Nn(t), t ∈ T, n ≥ 1} be a family
of nonnegative, integer-valued independent processes with independent sta-
tionary increments, with Nn(0) = 0 almost surely, T is either R+ = [0,∞)
or Z+ = {0, 1, ...}.

We define process X(n), n ≥ 0, as following. Let the initial state of the
process be X(0) which is an arbitrary non-negative random variable and for
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n ≥ 0

X(n + 1) =
Nn+1(X(n))∑

i=1

Wn+1i + Un+1, (1)

where {Un, n ≥ 1} is a sequence of independent non-negative random vari-
ables not necessarily identically distributed. Assume that families of ran-
dom variables {Wni, i, n ≥ 1}, {Un, n ≥ 1}, sequence of stochastic processes
{Nn(t), t ∈ T, n ≥ 1} and random variable X(0) are independent.

Now we provide first result establishing relationship between processes
X(n) and Z(n) in a sense of limiting behavior. In order to do that we use
the following Laplace transforms

G(λ) = Ee−λWni , Hn(λ) = Ee−λUn .

We also denote ratios

∆(n) =
P{Z(n) > 0}
P{X(n) > 0} , δ(n, λ) =

1−Hn(λ)

P{Z(n) > 0} .

Let the sequences of positive numbers {k(n), n ≥ 1} and {a(n), n ≥ 1}
be such that k(n), a(n) → ∞ and for each λ > 0 there exists 0 < b(λ) < ∞
such that

lim
n→∞ k(n)(1−G(

λ

a(n)
)) = b(λ). (2)

Existence of these sequences follows from monotonicity of the Laplace trans-
form G(λ). In fact one may choose

a(n) =
λ

G−1(1− b(λ)
k(n)

)

for a given sequence k(n), where G−1 stands for the inverse of G(λ).

Theorem 2.1. Let ϕ(λ) be a Laplace transform, ∆(n) → 1, n → ∞ and
δ(n, λ/a(n)) → 0 for each λ > 0 as n →∞. Then

lim
n→∞E[e−λX(n)/a(n)|X(n) > 0] = ϕ(b(λ)) (3)

for λ > 0, if and only if for each λ > 0

lim
n→∞E[e−λZ(n)/k(n)|Z(n) > 0] = ϕ(λ). (4)
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Remark 1. Condition ∆(n) → 1 as n → ∞ is trivially satisfied in the
case of stationary or increasing (EUn → ∞, n → ∞) immigration, because
in this case the ”non-extinction” probabilities of X(n) and Z(n) approach
1 as n → ∞. In the case of decreasing immigration one may expect of its
satisfaction in some natural assumptions on distributions of Wni and Un. For
the supercritical process without immigration it may hold only when the ex-
tinction probabilities of X(n) and Z(n) are equal. The last may hold, for
example, if P{Wni = 0} = 0 (see Adke and Gadag (1995)).

Remark 2. Condition δ(n, λn) → 0 as n → ∞ is trivially fulfilled for any
sequence λn, n ≥ 1 such that λn → 0 as n → ∞ in all cases, when the
extinction probability of Z(n) is less than one or the process does not allow
immigration. For processes which become extinct it may hold under some
restrictions on the rate of EUn as n →∞.

Proof. We consider the following obvious identity

E[e−λX(n)|X(n) > 0] = 1− 1− Ee−λX(n)

P (X(n) > 0)
. (5)

It follows from definition (1) of the process X(n) by total probability argu-
ments that

Ee−λX(n) = Hn(λ)EGZ(n)(λ). (6)

We obtain from (6) that

1− Ee−λX(n) = (1−Hn(λ))EGZ(n)(λ) + 1− EGZ(n)(λ).

Thus

1− Ee−λX(n)

P (Z(n) > 0)
= 1− E[GZ(n)(λ)|Z(n) > 0] + δ(n, λ)E[GZ(n)(λ)].

Hence the ratio on the right side of (5) equals

∆(n)
1− Ee−λX(n)

P (Z(n) > 0)
= −∆(n)E[GZ(n)(λ)|Z(n) > 0]+∆(n)[1+δ(n, λ)EGZ(n)(λ)].
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If we use this in relation (5) we obtain

E[e−λX(n)|X(n) > 0] = ∆(n)E[GZ(n)(λ)|Z(n) > 0] + ε(n), (7)

where
ε(n) = 1−∆(n)(1 + δ(n, λ)E[GZ(n)(λ)]).

Let (4) be satisfied for every λ > 0. Then, it clearly follows from con-
tinuity of the Laplace transform ϕ(λ), that the convergence in (4) holds
uniformly with respect to λ from arbitrary bounded interval. Since ln x =
−(1− x) + o(1− x), x → 1, we obtain from condition (2) that as n →∞

tn =: −k(n) ln G(
λ

a(n)
) → b(λ). (8)

Therefore for each fixed λ > 0 there is such a T = T (λ), with 0 < tn ≤ T for
any n = 1, 2, ... Now we consider (7) replacing λ by λ/a(n). It follows from
the definition of tn that

E[GZ(n)(
λ

a(n)
)|Z(n) > 0] = E[e−tnZ(n)/k(n)|Z(n) > 0]. (9)

We show that the Laplace transform (9) as n → ∞ approaches ϕ(b(λ)). In
order to do it we consider the following relation:

E[GZ(n)(
λ

a(n)
)|Z(n) > 0]− ϕ(b(λ)) = I1 + I2, (10)

where

I1 = E[e−tnZ(n)/k(n)|Z(n) > 0]− ϕ(tn), I2 = ϕ(tn)− ϕ(b(λ)).

It follows from (4), due to the uniform convergence, that

|I1| ≤ sup
0<tn<T

|E[e−tnZ(n)/k(n)|Z(n) > 0]− ϕ(tn)| → 0 (11)

as n → ∞. On the other hand I2 → 0 as n → ∞ due to continuity of the
Laplace transform ϕ(λ), for λ > 0. Thus we conclude that as n →∞

E[GZ(n)(
λ

a(n)
)|Z(n) > 0] → ϕ(b(λ)). (12)
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Since ∆(n) → 1 and δ(n, λ
a(n)

) → 0 as n → ∞, we obtain that ε(n) → 0 as

n →∞. The assertion (3) now follows from relations (7) and (12). The first
part of Theorem 2.1 is proved.

Let now (3) be satisfied. It follows from condition (2) that τn = tn/b(λ) →
1 as n → ∞ for each λ > 0 (recall that tn = −k(n) ln G(λ/a(n))). We
consider the following Laplace transform:

E[e−Z(n)b(λ)τn/k(n)|Z(n) > 0] = E[GZ(n)(
λ

a(n)
)|Z(n) > 0]. (13)

It follows from relations (3), (7) and (13), due to continuity of ϕ(λ), that

lim
n→∞E[e−Z(n)b(λ)τn/k(n)|Z(n) > 0] = ϕ(b(λ)). (14)

Due to continuity theorem for Laplace transforms (14) means that
{

Z(n)τn

k(n)
|Z(n) > 0

}
d→ ξ

as n → ∞, with Ee−λξ = ϕ(λ). Since τn → 1, n → ∞, we have that
Z(n)/k(n) given Z(n) > 0, as n → ∞ converges to ξ in distribution. If we
write this in terms of Laplace transforms, we get assertion of (4). Theorem
2.1 is proved completely.

Next theorem relates to the situation when the limit distribution of Z(n)
is discrete.

Theorem 2.2. Let ϕ(λ) be a Laplace transform of a discrete random vari-
able, ∆(n) → 1 and δ(n, λ) → 0 for each λ > 0 as n →∞. Then

lim
n→∞E[e−λX(n)|X(n) > 0] = ϕ(− log(G(λ))) (15)

for each λ > 0, if and only if for each u > 0

lim
n→∞E[e−uZ(n)|Z(n) > 0] = ϕ(u). (16)

Proof. Let (16) be satisfied. Making substitution u = − log G(λ), λ > 0, we
get that as n →∞

E[GZ(n)(λ)|Z(n) > 0] → ϕ(− log(G(λ))).
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Taking this into account in relation (7) we obtain first part of the theorem.
Let now (15) holds. Then it follows from relation (7) that as n →∞

E[eZ(n) log G(λ)|Z(n) > 0] → ϕ(− log(G(λ)))

which shows (16) by the same substitution u = − log G(λ). Theorem 2.2 is
proved.

Now we obtain a similar duality result for unconditional distributions of
processes Z(n) and X(n). It will also be formulated in terms of Laplace
transforms.

Theorem 2.3. Let ϕ(λ) be a Laplace transform and for sequences {a(n), n ≥
1} and {k(n), n ≥ 1} condition (2) be satisfied. Then

lim
n→∞Ee−λX(n)/a(n) = ϕ(b(λ)) (17)

if and only if for each λ > 0

lim
n→∞Ee−λZ(n)/k(n) = ϕ(λ). (18)

Proof. Now we use equation (6) directly. Let (18) be satisfied for each λ > 0.
Then it holds uniformly with respect to λ > 0 from each bounded interval.
Again taking into account relation (9) we present difference E[GZ(n)(λ/a(n))]−
ϕ(b(λ)) as I1 + I2 and, as in the proof of Theorem 1, show that both I1 and
I2 approach to zero as n → ∞. This leads assertion of (17) due to relation
(6).

The proof of the necessity of (18) for (17) is similar to the proof of the
second part of previous theorem. One just needs to consider unconditional
Laplace transforms instead of conditional ones. Theorem 2.3 is proved.

3 Moments and regularly varying tails

The offspring distribution and the distribution of the number of immigrating
”individuals” have Laplace transforms G(f(λ)) = Ee−λξn and Hn(f(λ)) =
Ee−ληn , respectively (Adke and Gadag (1995)). Here ξn = Nn(Wn−11), ηn =
Nn(Un−1) and f(λ) = − log Ee−λNn(1).
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We obtain the moments of offspring and immigration distributions by
standard arguments. It is easy to see that

m = Eξn = − d

dλ
G(f(λ))λ=0 = EWEN,

where N = N1(1),W = W11 and

α(n) = Eηn = − d

dλ
Hn(f(λ))λ=0 = EUnEN.

By similar arguments we obtain that

Eη2
n = EUnvarN + EU2

n(EN)2

and for the factorial moment β(n) = Eηn(ηn − 1) we have

β(n) = (EN)2EUn(Un − 1) + EN(N − 1)EUn.

We assume that Laplace transforms of random variables W and N can
be represented in the form

Ee−λW = e−aλ + (1− e−aλ)1+αLα(1− e−λ), (19)

and
Ee−λN = e−bλ + (1− e−bλ)1+βLβ(1− e−λ), (20)

where a, b are fixed positive numbers 0 < α, β ≤ 1, Lα(s) and Lβ(s) are
slowly varying functions as s ↑ 1. It is not difficult to see that in this case
EW = a and EN = b are finite but second moments may not be finite. Note
that in the case of finite variances relations (19) and (20) are satisfied with
α = β = 1 and Lα(s) and Lβ(s) having finite limits.

Proposition. If (19) and (20) are satisfied and ab = 1, then Z(n) is critical
and the offspring distribution has Laplace transform

G(f(λ)) = e−λ + (1− e−λ)1+θL(1− e−λ), (21)

where θ = min(α, β) and L(x) is slowly varying function such that

L(x) ∼




Lα(x), if α < β
Lβ(x)bβ, if α > β
Lα(x) + Lβ(x)bβ, if α = β
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for 0 < α, β < 1 and

L(x) ∼ Lα(x) + bLβ(x) +
b− 1

2

for α = β = 1.

Proof. We obtain the proof of the proposition easily using Taylor expansion
of function (1− x)a and simple properties of slowly varying functions.

From now on we assume throughout that (21) is satisfied with 0 < θ ≤ 1
and with some slowly varying function L(x). We define by V (n) a BGW
process with offspring distribution defined by Laplace transform G(f(λ)). It
is known ( Harris (1966)) that, if 0 < G(f(∞)) < 1, then process V (n) has
a stationary measure {µk, k ≥ 1} whose generating function U(s) is analytic
in the disk |s| < q, where q is the extinction probability, and satisfies Abel’s
equation

U(G(f(− log s))) = 1 + U(s) (22)

with initial condition U(G(f(∞))) = 1, U(0) = 0, U(1) = ∞.
If G(f(λ)) satisfies (21), then it is not difficult to see (Slack(1968)), that

U(s) =
1 + o(1)

θ(1− s)θL(1− s)
, s ↑ 1 (23)

solves equation (22). On the other hand U(1− s) is invertible and its inverse
g(x), x > 0, has the form

g(x) =
M(x)

x1/θ
, (24)

where M(x) varies slowly at infinity and θM θ(x)L(g(x)) → 1 as x →∞.

4 The probability of non-extinction

In the case of stationary immigration (fixed environment) P (X(n) > 0)
approaches 1 as n → ∞. However, if the immigration rate depends on the
environment, this probability may approach any number in [0, 1] including 0
and 1. Moreover, the asymptotic behavior of the process strongly depends on
the behavior of this probability. Here we provide some results for P (X(n) >
0) in the case when the immigration rate approaches zero as n → ∞. It
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turns out that asymptotic behavior of this probability depends on partial
sum d(n) =

∑n
k=0 P{V (k) > 0}.

We assume that α(n) < ∞, β(n) < ∞ for each n ≥ 1, α(n) varies regularly
at infinity and as n →∞

P{Un > 0} = O(EUn) (25)

Theorem 4.1. Let (21) and (25) be satisfied and α(n) → 0, n →∞.
a) If α(n)d(n) →∞, then P{X(n) > 0} → 1;
b) If α(n)d(n) → C ∈ (0,∞), then P{X(n) > 0} → 1− e−C;
c) If α(n)d(n) → 0, then P{X(n) > 0} → 0.

Remark. If Un, n ≥ 1 takes nonnegative integer values, condition (25) is
obviously satisfied. In general (25) may hold, for instance, if distribution of
Un has an atom at zero which seems natural in the case of vanishing immigra-
tion. Let, for example, Un, n ≥ 1 has the following cumulative distribution
function

P{Un ≤ x} =
an + 1− e−x/bn

1 + an

, x ≥ 0,

where an and bn are some positive numbers. We see that in this case
P{Un > 0} = (1 + an)−1 and EUn = bn(1 + an)−1 and condition (25) is
satisfied, if lim infn→∞ bn > 0.

Proof of Theorem 4.1. Putting λ →∞ in relation (6), we obtain equation

P{X(n) = 0} = P{Un = 0}Ψ(n, P0),

where P0 = P{W = 0} and Ψ(n, s) = EsZ(n), 0 ≤ s ≤ 1. If P0 = 0, it is clear
that P{X(n) = 0} ∼ P{Z(n) = 0}, n → ∞, when α(n) → 0. Assume that
0 < P0 < 1. Let f ∗(s) = G(f(− log s)) be generating function of offspring
distribution of V (n) and f ∗n(s) its nth functional iteration. It is known that,
if (21) is satisfied (see Rahimov 1995, p. 107, for example), then

1− f ∗n(s) = g(n + U(s)). (26)

Since g(x) is regularly varying as x → ∞ we obtain that 1 − f ∗n(P0) ∼
1 − f ∗n(0), n → ∞ for each 0 < P0 < 1 (recall that U(0) = 0). Using this
fact we obtain by standard analysis that Ψ(n, P0) ∼ Ψ(n, 0), n → ∞ and
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consequently we again have P{X(n) = 0} ∼ P{Z(n) = 0} as n → ∞. The
assertion of Theorem 4.1 now follows from Theorem 1.1 in Rahimov (1986),
where asymptotic behavior of the last probability is studied.

Now we provide a result which gives decreasing rate of the non extinc-
tion probability when α(n)d(n) → 0. We denote Q1(n) = α(n)d(n) and
Q2(n) = P{V (n) > 0}∑n

k=1 α(k).

Theorem 4.2. If (21) and (25) are satisfied, Q1(n) → 0, d(n) → ∞ and
β(n) = o(Q1(n) + Q2(n)) then as n →∞

P{X(n) > 0} ∼ Q1(n) + Q2(n) (27)

Proof. We obtain using (6) that

P (X(n) > 0) = 1−Ψ(n, P0) + P (Un > 0)Ψ(n, P0). (28)

By the same arguments as in the proof of previous theorem we have that
1 − Ψ(n, P0) ∼ 1 − Ψ(n, 0) = P{Z(n) > 0} as n → ∞ for each 0 ≤ P0 < 1.
If conditions of Theorem 4.2 are fulfilled , then P{Z(n) > 0} ∼ Q1(n) +
Q2(n), n → ∞, due to Theorem 1.2 in Rahimov (1986). Consequently, it is
sufficient to show that last summand on the right side of (28) is o(Q1(n) +
Q2(n)). Since P{Un > 0} = O(α(n)) and d(n) →∞, we obtain that P{Un >
0} = o(Q1(n)) which means that the last assertion holds. Theorem is proved.

Results of this section will further be used when we apply theorems from
Section 2 to obtain limit distributions for process X(n). However these re-
sults are of independent interest as well. For instance Theorem 4.2 shows
that event {X(n) > 0} may occur, roughly speaking, either because of de-
scendants of ”recent immigrants” or because of the individuals immigrated
in the beginning of the process.

5 Limit theorems

Here we show how limit theorems for X(n) can be deduced from those of Z(n)
in the case of functional normalization. We use the following normalizing
functions:

T (x) = exp{
∫ x

0
g(u)du}, Ω(x) = T (U(1− x−1)).
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As it was noted before, relation (21) is satisfied in the case of finite variance, if
θ = 1 and L(s) → C1 > 0, s ↑ 1. We exclude here the situation of C1 = 0, as
in this case the offspring variance is zero. From here it follows that M(x) from
equality (24) has a finite limit C2 ≥ 0 as x →∞. Therefore xT ′(x)/T (x) =
M(x) also has finite limit, which means that T (x) is a regularly varying
function. From here and relation (23) we conclude that Ω(x) also varies
regularly as x →∞.

It follows from Theorem 2.1 in Rahimov (1986) that, if (21) is satisfied,
α(n) → 0, α(n)d(n) →∞ and β(n) → 0, then

(
Ω(Z(n))

Ω(1/g(n))

)α(n)

→ ξ (29)

as n → ∞ in distribution, where ξ has the uniform distribution on [0, 1].
Since Ω(x) varies regularly Ω(x/y) ∼ y−C3Ω(x) for each y > 0 and some
C3 > 0 and it follows from (29) that

lim
n→∞P{(Ω(Z(n)/y)

Ω(1/g(n))
)α(n) ≤ x} = x, 0 ≤ x ≤ 1. (30)

Taking into account trivial equalities

Ω(1/g(n)) = T (U(1− g(n))) = T (n), T−1(Ω(x)) = U(1− x−1)

and facts that T (x) is increasing and g(x) is decreasing functions, we ob-
tain from (30) that P{Z(n)g(t(n)) ≤ y} → x, n → ∞, where t(n) =
T−1(T (n)x1/α), y > 0.

Thus condition (18) of Theorem 2.3 is fulfilled with k(n) = 1/g(t(n))
and ϕ(λ) = Ee−λη = x, whereP{η = 0} = 1 − P{η = ∞} = x. Since
1 − G(λ) ∼ λa, λ → 0 condition (2) is also satisfied for a(n) = k(n) and
b(λ) = λa. Therefore from Theorem 2.3 we obtain

Ee−λX(n)g(t(n)) → Ee−ηλa ≡ x,

which implies that P{X(n)g(t(n)) ≤ y} → P{η ≤ y} = x as n → ∞ for
each y > 0. Putting y = 1 we obtain the following result.

Theorem 5.1. If (21) is satisfied, α(n) → 0, α(n)d(n) →∞ and β(n) → 0,
then

lim
n→∞P

{
(

Ω(X(n))

Ω(1/g(n))
)α(n) ≤ x

}
= x, 0 ≤ x ≤ 1.
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Now we provide results concerning the situation when α(n) approaches
zero faster.

Theorem 5.2. If (21) and (25) are satisfied, α(n) → 0, α(n)d(n) → C ∈
(0,∞), then

lim
n→∞P

{
(Ω(X(n)))α(n) − 1

(Ω(1/g(n)))α(n) − 1
≤ x|X(n) > 0

}
= x, 0 ≤ x ≤ 1.

Note that when conditions of Theorem 5.2 are fulfilled Ωα(n)(1/g(n)) =
T α(n)(n) → eC as n →∞. When α(n) → 0 faster than 1/d(n), the behavior
of the process is effected by new parameter γ(n) = Q1(n)/Q2(n).

Theorem 5.3. If (21) and (25) are satisfied, d(n) → ∞, α(n)d(n) →
0, β(n) = o(Q1(n)) and γ(n) →∞, then

lim
n→∞P

{
log Ω(X(n))

log Ω(1/g(n))
≤ x|X(n) > 0

}
= x, 0 ≤ x ≤ 1.

When γ(n) → 0, n →∞ we eventually come to the situation when process
X(n) is not effected by immigration component at all.

Theorem 5.4. If (21) and (25) are satisfied, d(n) → ∞, α(n)d(n) →
0, β(n) = o(Q1(n)) and γ(n) → 0, then

lim
n→∞P {g(n)X(n) ≤ x|X(n) > 0} = 1− e−x, x ≥ 0.

Theorem 5.5. If (21) and (25) are fulfilled, d(n) → ∞, α(n)d(n) →
0, β(n) = o(Q1(n) + Q2(n)) and γ(n) → γ ∈ (0,∞),as n → ∞, then the
following two assertions hold

i) lim
n→∞P

{
log Ω(X(n))

log Ω(1/g(n))
≤ x|X(n) > 0

}
=

xγ

1 + γ
, 0 ≤ x ≤ 1;

ii) lim
n→∞P {g(n)X(n) ≤ x|X(n) > 0} =

1 + γ − e−x

1 + γ
, x ≥ 0.
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Remarks. 1. It is not difficult to see that limit distribution in last theorem
has an atom of the mass (1 + γ)−1 at x = 1 in the case (i) and has atom of
the mass γ(1 + γ)−1 at zero in the case (ii).

2. Theorems 5.1-5.5 extend results of the paper [4] obtained for BGW
processes to the process X(n).

Proof of Theorem 5.2. This time we use Theorem 2.1. By the same
arguments as in the proof of previous theorem we show that, when conditions
of our theorem are fulfilled,

E[e−λZ(n)g(t(n))|Z(n) > 0] → x

as n →∞, where t(n) = T−1([x(Tα(n)(n)− 1)+1]1/α(n)). Thus condition (4)
is satisfied with k(n) = 1/g(t(n)) and ϕ(λ) = Ee−λaη = x. Condition (2) is
also satisfied with a(n) = k(n) and b(λ) = aλ. It follows from Theorem 4.1
that non extinction probabilities of processes X(n) and Z(n) have the same
limit and consequently ∆(n) → 1 as n →∞.

Since 1−Hn(λ) ≤ λEUn and P{Z(n) > 0} → 1−e−C , there is a constant
K1 > 0 such that for sufficiently large n

δ(n, λg(t(n))) ≤ K1g(t(n))α(n)

and thus δ(n, λg(t(n))) → 0 as n →∞. Hence all conditions of Theorem 2.1
are satisfied and we conclude that

P{X(n)g(t(n)) ≤ x|X(n) > 0} → x

as n → ∞ for each y > 0. If we put y = 1 here, we obtain the assertion of
Theorem 5.2.

Proof of Theorem 5.3. The same arguments as in the proof of previous
theorem lead that condition (4) is satisfied with k(n) = 1/g(t(n)) and t(n) =
T−1(T x(n)), 0 < x < 1. When γ(n) →∞ the non extinction probabilities of
both processes X(n) and Z(n) behave as Q1(n) and consequently ∆(n) →
1, n →∞.
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Since 1−Hn(λ) ≤ λEUn and P{Z(n) > 0} ∼ Q1(n), there is a constant
K2 > 0 such that

δ(n, λg(t(n))) ≤ K2
g(t(n))α(n)

Q1(n)
.

Taking into account that Q1(n) = α(n)d(n) we conclude that δ(n, λg(t(n))) →
0 as n → ∞. Thus all conditions of Theorem 2.1 are fulfilled and assertion
of Theorem 5.3 follows as in the proof of previous result. Theorem 5.3 is
proved.

Proofs of remaining theorems follow the same scheme as proofs of previous
theorems. Namely we show fulfillment of conditions of Theorem 2.1, using
corresponding results for BGW processes and results from Section 4 of present
paper.

We also note that similar results can be obtained when d(n) has a finite
limit as n →∞. In particular when γ(n) →∞, n →∞ conditioned process
{X(n)|X(n) > 0} has a discrete limit distribution. It is clear that in this
case the proof will be based on Theorem 2.2.

6 Increasing immigration

In this section we consider the case α(n) →∞ as n →∞. We demonstrate
that Theorem 2.3 allows to extend results for BGW processes with increasing
immigration on convergence to infinitely divisible and stable distributions
obtained in [5], to the continuous-state process X(n).

Let h(n) = ng(n) = M(n)/n1/θ−1, B(n) =
∑n

k=1 β(k).

Theorem 6.1. If (21) is fulfilled, α(n)h(n) → C ∈ (0,∞) and B(n)g2(n) →
0 as n → ∞, then g(n)X(n) converges in distribution to a random variable
Z(θ, C) which has an infinitely divisible distribution with Laplace transform

Ψ(θ, C, λ) = exp

{
−C

∫ 1

0
(

x1−θ

1− x + (λa)−θ
)1/θdx

}
, λ > 0. (31)

Remark. It is not difficult to see that, if θ = 1 the limit distribution is
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gamma with density function

a−C

Γ(C)
xC−1e−x/a, x ≥ 0.

If θ = 1/2, then the Laplace transform in (31) is

(1 +
√

aλ)−Ce−C
√

aλ

and in general for each natural k

Ψ(1/2k, C, λ) = exp

{
− C

2k(1 + aλ)2k
F1(2k, 2k, 2k + 1,

aλ

1 + aλ
)

}
,

where F1(a, b, c, y) is Gauss’ hypergeometric function.
Now we consider the case α(n)h(n) → 0. In this case there exists positive

sequence m(n), n ≥ 1 such that α(n)h(m(n)) has a finite limit as n → ∞
and we have the following result.

Theorem 6.2. If (21) is fulfilled with 0 < θ < 1, α(n)h(n) → 0, α(n)h(m(n)) →
C ∈ (0,∞) and B(n)g2(m(n)) → 0 as n →∞, then X(n)g(m(n)) converges
in distribution to a random variable W (θ, C) which has a stable distribution
with Laplace transform

Ee−λW (θ,C) = exp

{
−a1−θCθ

1− θ
λ1−θ

}
, λ > 0.

Example. Let in relation (21) 0 < θ < 1 and L(s) → C0 ∈ (0,∞), s ↑ 1.
Then it is clear that in (24) M(x) → C1 = (C0θ)

−1/θ as x → ∞. If we
take m(n) = (α(n))rθ where r = 1/(1 − θ), then α(n)h(m(n)) → C1 and
g(m(n)) ∼ C1/(α(n))r. Hence we obtain the following result from Theorem
6.2.
Corollary. If conditions of Theorem 6.2 are satisfied and L(s) → C0, S ↑ 1,
then X(n)(α(n))−r as n → ∞ converges in distribution to random variable
W (θ, C0) such that

Ee−λW (θ,C0) = exp

{
− a1−θ

C0(1− θ)
λ1−θ

}
.
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Proof of Theorem 6.1. Proof will use Theorem 2.3. We obtain from
Theorem 3 in Rahimov (1993) that when conditions of Theorem 6.1 are sat-
isfied g(n)Z(n) → Z∗ as n → ∞ in distribution , where Z∗ has Laplace
transform Ψ∗(λ) = Ψ(θ, C, λ/a). This means that condition (18) is satis-
fied with k(n) = 1/g(n) and ϕ(λ) = Ψ∗(λ). Condition (2) is also satisfied
for a(n) = k(n) and b(λ) = aλ. Hence we obtain from our Theorem 2.3
that g(n)X(n) → Z(θ, C) in distribution and Z(θ, C) has Laplace transform
Ψ(θ, C, λ).

Proof of Theorem 6.2. It follows from Theorem 2 in Rahimov (1993)
that under conditions of Theorem 6.2 Z(n)g(m(n)) → W ∗ in distribution as
n →∞, where sequence m(n), n ≥ 1 is such that α(n)h(m(n)) → C and the
Laplace transform of W ∗ is exp{−Cθλ1−θ/(1− θ)}. Consequently condition
(18) is fulfilled with k(n) = 1/g(m(n)) and ϕ(λ) = E−λW ∗

. Since condition
(2) is satisfied again with a(n) = k(n) and b(λ) = aλ, the assertion of the
theorem follows from Theorem 2.3.

In conclusion we note that, if α(n)h(n) → 0, n →∞ and θ = 1, one can
obtain a limit theorem with functional normalization similar to Theorem 5.1.

Concluding remarks.

Now we may conclude that Theorems 2.1-2.3 are also applicable to subcritical
and supercritical processes. Conditions on process Z(n) are usually satisfied
in cases, when corresponding limit theorems for BGW processes hold. As-
sumption ∆(n) → 1, n → ∞, is trivially fulfilled for processes which do
not extinct. To apply these theorems for processes without immigration one
needs just assume that Uk = 0, k ≥ 1, almost surely. In this case δ(n, λ) = 0
for each n ≥ 1 and λ > 0.
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