
OPTIMIZATION; Techniques and Applications, Vol. 2, pp. 1165-1172, (1998)
Edited by L. Caccetta, K.L. Teo. P.F. Siew, Y.H. Leung, L.S. Jennings and V. Rehbock

Curtin University of Technology, Perth

Pre-variational Inequalities in Banach Spaces1

Q. H. Ansari2 and J. C. Yao
Department of Applied Mathematics

National Sun Yat-sen University
Kaohsiung, Taiwan, ROC

1This research was supported by National Science Council of the Republic of China
2Permanent Address: Department of Mathematics, A.M.U., Aligarh, India

1



Abstract: In this paper, we study the existence of solution of pre-variational inequality in the

setting of reflexive Banach spaces. We see that the existence theorems of Yang and Chen (Ref.6)

are also hold good in the setting of reflexive Banach spaces with some less assumptions.
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1. Introduction

Let E be a normed space with its dual E∗ and K ⊂ E be a closed convex subset. We denote

the pairing between E∗ and E by 〈·, ·〉. Given two maps T : K −→ E∗ and η : K × K −→ E,

then the pre-variational inequality problem is to find u ∈ K such that

〈T (u), η(v, u)〉 ≥ 0, ∀v ∈ K. (1.1)

We note that problem (1.1) was investigated in Refs.(4,6), where E is the n-dimensional

Euclidean space.

Let ψ : K −→ IR be Fréchet differentiable. Then ψ is called η− convex on K (Ref.3) if there

exists a continuous map η : K ×K −→ E such that

ψ(v)− ψ(u) ≥ 〈ψ′(u), η(v, u)〉, ∀u, v ∈ K,

where ψ′(u) is the Fréchet derivative of ψ at u.

Suppose that f is η − convex on K for some continuous map η : K × K −→ E. Then the

minimization problem

min f(u) subject to u ∈ K, (1.2)

where f is Fréchet differentiable with f ′(u) = T (u), has a solution u if it is a solution of pre-

variational inequality problem (1.1) (Refs.1,4).

In this paper, we prove the existence of solution of (1.1) in the setting of reflexive Banach

spaces. We see that the existence Theorems 9 and 10 in Ref.6 are also hold good in the setting

of reflexive Banach spaces without the assumption that η(., .) is normal and regular, respectively,

on K in these theorems.

2. Existence Results

Through out in this section, we will consider X as a real reflexive Banach space with its dual X∗.

The bilinear form 〈·, ·〉 is supposed to be continuous.

We need the following concepts and results.
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A multivalued map S : X −→ 2X is called KKM −map, if for every finite subset {u1, u2, · · ·, un}
of X, conv({u1, u2, · · ·, un}) ⊂

⋃n
i=1 S(ui),

where 2X is the set of all subsets of X and conv(A), ∀A ⊂ X, the convex hull of A.

Lemma 2.1 (Ref.2). Let A be an arbitrary nonempty set in a topological vector space Y and

S : A −→ 2Y be a KKM-map. If S(u) is closed for all u ∈ A and is compact for at least one u ∈ A
then ⋂

u∈A

S(u) 6= ∅.

We now establish the main result of this paper.

Theorem 2.1. Let K be a nonempty closed convex bounded subset of a real reflexive Banach

space X. Assume that:

(i) η(u, u) = 0, ∀u ∈ K;

(ii) h(v) := 〈T (u), η(v, u)〉 is convex in v, ∀u ∈ K;

(iii) g(u) := 〈T (u), η(v, u)〉 is upper semicontinuous and concave in u, ∀v ∈ K.

Then there exists an element u0 ∈ K such that

〈T (u0), η(v, u0)〉 ≥ 0, ∀v ∈ K.

Proof. Let

F (v) = {u ∈ K : 〈T (u), η(v, u)〉 ≥ 0}, ∀v ∈ K.

We note that since η(v, v) = 0, ∀v ∈ K, we have v ∈ F (v) and hence F (v) is nonempty, ∀v ∈ K.

By the same arguments as in Theorem 2.1 of Ref.5, we see that F is a KKM-map. We remark

that F (v) is closed, ∀v ∈ K. Indeed, let {un} be a sequence in F (v) such that un −→ u ∈ K.

Since un ∈ F (v) ∀n, we have

〈T (un), η(v, un)〉 ≥ 0, ∀v ∈ K.

Since g(u) = 〈T (u), η(v, u)〉 is upper semicontinuous, ∀v ∈ K, we have

lim sup
n→∞

〈T (un), η(v, un)〉 ≤ 〈T (u), η(v, u)〉
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and hence

〈T (u), η(v, u)〉 ≥ 0, ∀v ∈ K.

This implies that u ∈ F (v) and hence F (v) is norm closed.

Next we will see that F (v) is convex. Let u1, u2 ∈ F (v) and α, β ≥ 0 such that α + β = 1. Then

we have

〈T (u1), η(v, u1)〉 ≥ 0 (2.1)

and

〈T (u2), η(v, u2)〉 ≥ 0. (2.2)

Multiplying (2.1) by α and (2.2) by β and adding the resulting inequalities, we have

α〈T (u1), η(v, u1)〉+ β〈T (u2), η(v, u2)〉 ≥ 0, ∀v ∈ K.

Since g(u) = 〈T (u), η(v, u)〉 is concave, ∀v ∈ K, we have

〈T (αu1 + βu2), η(v, αu1 + βu2)〉 = g(αu1 + βu2)

≥ αg(u1) + βg(u2)

= α〈T (u1), η(v, u1)〉+ β〈T (u2), η(v, u2)〉

≥ 0.

This implies that αu1 + βu2 ∈ F (v) and hence F (v) is convex.

Now, we equip X with the weak topology. Then K, as a closed bounded convex subset in

the real reflexive Banach space X, is weakly compact. Since F (v) is a closed convex subset of a

reflexive Banach space, F (v) is weakly closed. From the facts that F (v) ⊂ K and weak closedness

of F (v), we have F (v) is weakly compact. Then by Lemma 2.1, we have

⋂
v∈K

F (v) 6= ∅.

Hence there exists u0 ∈ K such that

〈T (u0), η(u, u0)〉 ≥ 0, ∀u ∈ K.
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If we take X = IRn, then there is no need to prove that F (v) is convex, and hence we have

the following result:

Corollary 2.1. Let K be closed bounded convex subset of IRn and T : K −→ IRn. Assume

that

(i) η(u, u) = 0, ∀u ∈ K;

(ii) h(v) := 〈T (u), η(v, u)〉 is convex in v, ∀u ∈ K;

(iii) g(u) := 〈T (u), η(v, u)〉 is upper semicontinuous in u, ∀v ∈ K.

Then there exists an element u0 ∈ K such that

〈T (u0), η(v, u0)〉 ≥ 0, ∀v ∈ K.

Remark 2.1. Corollary 2.1 covers Theorem 8 in Ref.6 as a special case where T is assumed

to be continuous.

A map T : K −→ X∗ is said to be pre-coercive with respect to η(y, x) (Ref.6) if there exists

u0 ∈ K such that
〈T (u)− T (u0), η(u, u0)〉

||η(u, u0)||
−→ +∞, (2.3)

whenever ||u|| −→ +∞.

When K is not bounded, we have the following result:

Theorem 2.2. Let K be a nonempty closed convex subset of a real reflexive Banach space X.

Assume that:

(i) η(u, u) = 0, ∀u ∈ K;

(ii) T : K → X∗ is pre-coercive with respect to η(v, u);

(iii) h(v) := 〈T (u), η(v, u)〉 is convex in v for each fixed u ∈ K;

(iv) g(u) := 〈T (u), η(v, u)〉 is upper semicontinuous and concave in u, ∀v ∈ K.
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Then the pre-variational inequality (1.1) has solutions.

Proof: As in Ref.6, let Br denote the closed ball of centre 0 and radius r in X. If we substitute

K
⋂
Br for K then the assumptions of Theorem 2.1 are satisfied. Hence there exists a solution ur

of the following per-variational inequality problem:

Find u ∈ K ∩Br such that 〈T (u), η(v, u)〉 ≥ 0, ∀v ∈ K ∩Br.

Choose r ≥ ||u0|| with u0 as in the pre-coercive condition. Then

〈T (ur), η(u0, ur)〉 ≥ 0 (2.4)

As in Ref.6, we have

〈T (ur), η(u0, ur)〉 ≤ ||η(u0, ur)||[
−〈T (u0)− T (ur), η(u0, ur)〉

||η(u0, ur)||
+ ||T (u0)] (2.5)

If ||ur|| = r for all r, we choose r large enough that (2.5) and condition (2.3) imply

〈T (ur), η(u0, ur) < 0

which is a contradiction of (2.4). Hence, there exists r such that ||ur|| < r. For each v ∈ K, we

choose α > 0 small enough that αv + (1− α)ur ∈ K ∩Br. Therefore

〈T (ur), η(αv + (1− α)ur, ur) ≥ 0.

Since h(v) = 〈T (u), η(v, u)〉 is convex in v, ∀u ∈ K, we have

α〈T (ur), η(v, ur)〉+ (1− α)〈T (ur), η(ur, ur)〉 ≥ 0.

But by assumption (i), η(ur, ur) = 0, and hence

〈T (ur), η(v, ur) ≥ 0, ∀v ∈ K.

Hence ur is a solution of pre-variational inequality problem (1.1).

Now, again if X = IRn then from Corollary 2.1 and Theorem 2.2, we have the following result:

Corollary 2.2. Let K be a nonempty closed convex subset of IRn. Assume that:
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(i) η(u, u) = 0, ∀u ∈ K;

(ii) T : K −→ IR∗ is pre-coercive with respect to η(v, u);

(iii) h(v) := 〈T (u), η(v, u)〉 is convex in v for each fixed u ∈ K;

(iv) g(u) := 〈T (u), η(v, u)〉 is upper semicontinuous in u, ∀v ∈ K.

Then the pre-variational inequality (1.1) has solutions.

Remark 2.2. We note that Corollary 2.2 generalizes Theorems 9 and 10 in Ref.6. In this corollary,
we have neither assumed that η(v, u) is normal nor regular on K as these conditions were taken
in Ref.6.
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