NONLINEAR VARIATIONAL INEQUALITIES FOR PSEUDOMONOTONE OPERATORS WITH APPLICATIONS*

Qamrul Hasan Ansari[†] Aligarh Muslim University Department of Mathematics Aligarh 202 002, India

and

Jen-Chih Yao National Sun Yat-sen University Department of Applied Mathematics Kaohsiung 804, Taiwan, ROC

Abstract. In this paper, we prove the existence of solutions to the variational and variational-like inequalities for pseudomonotone and pseudodissipative and, η -pseudomonotone and η -pseudodissipative operators, respectively. As applications of our results, we prove the existence of a unique solution of nonlinear equations, fixed point problems and eigenvalue problems.

1991 Mathematics Subject Classification. 49J40, 47H10, 47H19, 47H05

1. INTRODUCTION AND PRELIMINARIES

Let X be a real locally convex Hausdorff topological vector space with topological dual X^* and K a non-empty subset of X. Let $T : K \to X^*$ be an operator and $\eta : K \times K \to X$ a bifunction. The variational-like inequality problem (for short, VLIP) is to find $\bar{x} \in K$ such that

$$\langle T(\bar{x}), \eta(y, \bar{x}) \rangle \ge 0$$
, for all $y \in K$,

where $\langle u, x \rangle$ denotes the pairing between $u \in X^*$ and $x \in X$. For further details on VLIP, we refere to [2, 5, 9-12, 16] and references therein.

^{*}This research was supported by the National Science Council of the Republic of China.

[†]Present address: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan, ROC.

When $\eta(y, x) = y - x$, the VLIP reduces to the variational inequality problem (for short, VIP) [7] of finding $\bar{x} \in K$ such that

$$\langle T(\bar{x}), y - \bar{x} \rangle \ge 0$$
, for all $y \in K$.

In most of the results on the existence of solutions to the VIP and VLIP some kind of continuity assumption on the operator T is needed if it has some kind of monotonicity assumption, see for example [3-4, 6-8, 12-15, 17-18] and references therein.

The main object of this paper is to establish some existence results for VIP and VLIP in the setting of non-compact convex set K with pseudomonotone and pseudodissipative and, η -pseudomonotone and η -pseudodissipative operator T, respectively. As applications of our results, we prove the existence of a unique solution of nonlinear equations, fixed point problems and eigenvalue problems without any continuity assumption on the operator T.

We shall use the following notation and definitions. Let A be a non-empty set. We shall denote by 2^A the family of all subsets of A. If A and B are non-empty subsets of a topological vector space Y such that $A \subseteq B$, we shall denote by $int_B A$ the interior of A in B.

The inverse F^{-1} of a multivalued map $F: X \to 2^Y$ is the multivalued map from $\mathcal{R}(F)$, the range of F, to X defined by

$$x \in F^{-1}(y)$$
 if and only if $y \in F(x)$.

We shall use the following particular form of Corollary 1 in [1].

LEMMA 1.1. Let K be a non-empty and convex subset of a Hausdorff topological vector space E, and let $S: K \to 2^K$ be a multivalued map. Assume that the following conditions hold.

- (a) For each $x \in K$, S(x) is non-empty and convex.
- (b) $K = \bigcup \{ int_K S^{-1}(y) : y \in K \}.$
- (c) If K is not compact, assume that there exists a non-empty, compact and convex subset C of K and a non-empty and compact subset D of K such that for each $x \in K \setminus D$, there exists $\tilde{y} \in C$ such that $x \in int_K S^{-1}(\tilde{y})$.

Then S has a fixed point, that is, there exists $x_0 \in K$ such that $x_0 \in S(x_0)$.

2. EXISTENCE RESULTS

For a given bifunction $\eta: K \times K \to X$, an operator $T: K \to X^*$ is called:

(i) η -monotone if,

$$\langle T(y) - T(x), \eta(y, x) \rangle \ge 0$$
, for all $x, y \in K$;

(i) η -dissipative if,

$$\langle T(y) - T(x), \eta(y, x) \rangle \le 0$$
, for all $x, y \in K$;

(iii) η -pseudomonotone if,

$$\langle T(x), \eta(y, x) \rangle \ge 0$$
 implies $\langle T(y), \eta(y, x) \rangle \ge 0$, for all $x, y \in K$,

or equivalently,

$$\langle T(y), \eta(y, x) \rangle < 0$$
 implies $\langle T(x), \eta(y, x) \rangle < 0$, for all $x, y \in K$;

(iv) η -pseudodissipative if,

$$\langle T(y), \eta(y, x) \rangle \ge 0$$
 implies $\langle T(x), \eta(y, x) \rangle \ge 0$, for all $x, y \in K$,

or equivalently,

$$\langle T(x), \eta(y, x) \rangle < 0$$
 implies $\langle T(y), \eta(y, x) \rangle < 0$, for all $x, y \in K$.

When $\eta(y, x) = y - x$, the definitions of η -monotone, η -dissipative, η -pseudomonotone and η -pseudodissipative reduce to the definitions of monotone, dissipative [17], pseudomonotone and pseudodissipative, respectively.

EXAMPLE 2.1. Let $T : \mathbb{R} \to \mathbb{R}$ be defined as

$$T(x) = \begin{cases} 1 & : x \neq 1 \\ 2 & : x = 1. \end{cases}$$

Then T is pseudomonotone as well as pseudodissipative but it is neither monotone nor hemicontinuous.

For $\eta(y,x) = y^2 - x^2$, T is also η -pseudomonotone as well as η -pseudodissipative but not η -monotone.

An example of a pseudomonotone hemicontinuous operator is given in [15] which is not continuous on finite dimensional spaces.

THEOREM 2.1. Let K be a non-empty and convex subset of a locally convex Hausdorff topological vector space X and let $\eta : K \times K \to X$ be a bifunction such that $\eta(x, x) = 0$, for all $x \in K$. Assume that

- (i) $T: K \to X^*$ is η -pseudomonotone and η -pseudodissipative;
- (ii) for each fixed $y \in K$, the map $x \mapsto \langle T(y), \eta(y, x) \rangle$ is upper semicontinuous on K;
- (iii) for each fixed $x \in K$, the map $y \mapsto \langle T(x), \eta(y, x) \rangle$ is quasi-convex;
- (iv) there exists a non-empty, compact and convex subset C of K and a non-empty and compact subset D of K such that for each $x \in K \setminus D$, there exists $\tilde{y} \in C$ such that $\langle T(x), \eta(\tilde{y}, x) \rangle < 0$.

Then the VLIP has a solution.

PROOF. Assume that the VLIP has no solution. Then for each $x \in K$,

$$\{y \in K : \langle T(x), \eta(y, x) \rangle < 0\} \neq \emptyset.$$

We define a multivalued map $S:K\to 2^K$ by

$$S(x) = \{ y \in K : \langle T(x), \eta(y, x) \rangle < 0 \}, \text{ for all } x \in K.$$

Then clearly for all $x \in K$, $S(x) \neq \emptyset$. From assumption (iii), it is easy to see that S(x) is convex, for all $x \in K$. Now

$$S^{-1}(y) = \{ x \in K : \langle T(x), \eta(y, x) \rangle < 0 \}.$$

For each $y \in K$, we denote by $[S^{-1}(y)]^c$ the complement of $S^{-1}(y)$ in K. From the η - pseudomonotonicity of T, we have

$$[S^{-1}(y)]^c = \{x \in K : \langle T(x), \eta(y, x) \rangle \ge 0\}$$
$$\subseteq \{x \in K : \langle T(y), \eta(y, x) \rangle \ge 0\}$$
$$= H(y)(\text{say}).$$

From condition (ii), it is easy to show that for all $y \in K$, H(y) is closed in K.

From the η -pseudodissipativeness of T, we have

$$S^{-1}(y) = \{x \in K : \langle T(x), \eta(y, x) \rangle < 0\}$$
$$\subseteq \{x \in K : \langle T(y), \eta(y, x) \rangle < 0\}$$
$$= [H(y)]^c, \text{ the complement of } H(y) \text{ in } K.$$

Hence $S^{-1}(y) = [H(y)]^c$ and $S^{-1}(y)$ is open in K. Since $S(x) \neq \emptyset$, we have

$$K = \bigcup_{y \in K} S^{-1}(y) = \bigcup_{y \in K} int_K S^{-1}(y).$$

By assumption (iv), for each $x \in K \setminus D$, there exists $\tilde{y} \in C$ such that $\langle T(x), \eta(\tilde{y}, x) \rangle < 0$, we have $x \in int_K S^{-1}(\tilde{y})$. Then S satisfies all the conditions of Lemma 1.1, hence there exists $x_0 \in K$ such that $x_0 \in S(x_0)$, that is,

$$\langle T(x_0), \eta(x_0, x_0) \rangle < 0$$

Since $\eta(x_0, x_0) = 0$, we have

$$0 = \langle T(x_0), \eta(x_0, x_0) \rangle < 0,$$

a contradiction. Hence the result is proved.

REMARK 2.1. If X is a reflexive Banach space equipped with weak topology, then the assumption (iv) in Theorem 2.1 can be replaced by the following condition:

(iv)' There exists $\tilde{y} \in K$ such that $\liminf_{||x|| \to \infty, x \in K} \langle T(x), \eta(\tilde{y}, x) \rangle < 0$.

PROOF. By (iv)', there exists r > 0 such that $||\tilde{y}|| < r$ and if $x \in K$ with $||x|| \ge r$, we have $\langle T(x), \eta(\tilde{y}, x) \rangle < 0$. Define $B_r = \{x \in K : ||x|| \le r\}$. Then B_r is a non-empty weakly compact and convex subset of X. By taking $C = D = B_r$ in assumption (iv) of Theorem 2.1, we get the conclusion.

In view of Remark 2.1, we have the following result.

COROLLARY 2.1. Let K be a non-empty and convex subset of a reflexive Banach space X equipped with weak topology and let $\eta: K \times K \to X$ be a bifunction such that it is affine in the first argument, weakly continuous in the second argument and $\eta(x, x) = 0$, for all $x \in K$. Assume that $T: K \to X^*$ is η -pseudomonotone, η -pseudodissipative and there exists $\tilde{y} \in K$ such that $\liminf_{||x||\to\infty, x\in K} \langle T(x), \eta(\tilde{y}, x) \rangle < 0$. Then the VLIP has a solution.

COROLLARY 2.2. Let K be a non-empty and convex subset of a locally convex Hausdorff topological vector space X and let $T: K \to X^*$ be pseudomonotone and pseudodissipative. Assume that there exists a non-empty, compact and convex subset C of K and a non-empty and compact subset D of K such that for each $x \in K \setminus D$, there exists $\tilde{y} \in C$ such that $\langle T(x), \tilde{y} - x \rangle < 0$. Then the VIP has a solution.

REMARK 2.2. In the results of Browder [3-4], Hartman and Stampacchia [6] (Theorem 1.1), Tarafdar [13] (Theorem 2 and Corollary), Verma [14] (Theorem 2.2) and Yao [18] (Theorem 3.3), we need continuity/hemicontinuity/continuity on finite dimensional spaces. But in Corol-

lary 2.2 we do not assume any kind of continuity assumption.

COROLLARY 2.3. Let K be a non-empty and convex subset of a reflexive Banach space X equipped with weak topology and let $T: K \to X^*$ be pseudomonotone, pseudodissipative and has the property that there exists $\tilde{y} \in K$ such that $\liminf_{||x|| \to \infty, x \in K} \langle T(x), \tilde{y} - x \rangle < 0$. Then the VIP has a solution. Moreover, it T is strongly pseudomonotone then the solution is unique.

REMARK 2.3. Corollary 2.3 is different from Theorems 3.1 and 3.2 in [17] in the following ways:

- (a) X need not be a Hilbert space,
- (b) K need not be closed,
- (c) T need not be continuous on finite-dimensional subspaces,
- (d) T need not be hemicontinuous,
- (e) T is assumed only pseudomonotone and pseudodissipative, need not be monotone.

3. APPLICATIONS

Throughout this section, we will assume that H is a real Hilbert space with its inner product denoted by (.,.).

Let K be a non-empty subset of H. An operator $T: K \to K$ is called:

(i) strongly monotone if, there exists a constant $\alpha > 0$ such that

$$(T(y) - T(x), y - x) \ge \alpha ||y - x||^2, \quad \text{for all } x, y \in K;$$

(ii) relaxed strongly monotone if, there exists a constant $\beta < 1$ such that

$$(T(y) - T(x), y - x) \le \beta ||y - x||^2$$
, for all $x, y \in K$;

(iii) relaxed strongly dissipative if, there exists a constant $\nu < 1$ such that

$$(T(y) - T(x), y - x) \ge \nu ||y - x||^2$$
, for all $x, y \in K$;

(iv) strongly pseudomonotone if, there exists a constant $\gamma > 0$ such that

$$(T(x), y - x) \ge 0$$
 implies $(T(y), y - x) \ge \gamma ||y - x||^2$, for all $x, y \in K$.

We now give the following result concerning the existence of a unique solution of a nonlinear equation.

THEOREM 3.1. Let $T: H \to H$ be pseudomonotone, pseudodissipative and assume that there exists $\tilde{y} \in H$ such that $\liminf_{||x|| \to \infty} (T(x), \tilde{y} - x) < 0$. Then there exists $\bar{x} \in H$ such that $T(\bar{x}) = 0$. Moreover, if T is strongly pseudomonotone then the solution is unique.

PROOF. It is similar to the proof of Theorem 3.3 in [17].

REMARK 3.1. Theorem 3.1 is different from Theorem 3.3 in [17] in the following ways:

- (a) T need not be hemicontinuous,
- (b) T is assumed only pseudomonotone and pseudodissipative, need not be monotone.

By using the results of Section 2, we establish the following fixed point theorem.

THEOREM 3.2. Let K be a non-empty and convex subset of H and $T: K \to K$ be relaxed strongly monotone and relaxed strongly dissipative. Then T has a unique fixed point.

PROOF. It is similar to the proof of Theorem 3.4 in [17].

REMARK 3.2. Theorem 3.2 is different from Theorem 3.4 in [17] in the following ways:

- (a) K need not be closed,
- (b) T is assumed relaxed strongly dissipative, need not be hemicontinuous.

Finally, we derive the following existence results for solutions to the eigenvalue problem.

COROLLARY 3.1. Let K be a non-empty convex cone of H and $T: K \to K$ be monotone and dissipative. Then for any nonnegative real number λ and any $z \in K$, there exists a unique $\bar{x} \in K$ such that $\lambda T(\bar{x}) + z = \bar{x}$.

PROOF. It is similar to the proof of Corollary 3.7 in [17].

REMARK 3.3. Corollary 3.1 is different from Corollary 3.7 in [17] in the following ways:

(a) K need not be closed,

(b) T is assumed monotone, need not be hemicontinuous.

REFERENCES

- Q. H. Ansari and J. C. Yao, A fixed point theorem and its applications to a system of variational inequalities, *Bull. Austral. Math. Soc.* 59 (1999), 433-442.
- [2] Q. H. Ansari and J. C. Yao, On pre-variational inequalities in Banach spaces, in *Optimization: Techniques and Applications*, edited by L. Caccetta, K. L. Teo, P. F. Siew, Y. H. Leung, L. S. Jennings and V. Rehbock, Curtin University of Technology, Perth, pp. 1165-1172, (1998).
- [3] F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. soc. 71 (1965), 780-785.
- [4] F. E. Browder, The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301.
- [5] N. D. Dien, Some remarks on variational-like and quasivariational-like inequalities, Bull. Austral. Math. Soc. 46 (1992), 335-342.
- [6] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115 (1966), 153-188.
- [7] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, (1980).
- [8] G. J. Minty, Monotone (non-linear) operators in Hilbert spaces, Duke Math. J. 29 (1962), 341-346.
- [9] M. A. Noor, Variational-like inequalities, *Optimization* **30** (1994), 323-330.
- [10] M. A. Noor, Preinvex functions and variational inequalities, J. Nat. Geometry 9 (1996), 63-76.
- [11] J. Parida, M. Sahoo and A. Kumar, A variational-like inequality problem, Bull. Austral. Math. Soc. 39 (1989), 225-231.
- [12] A. H. Siddiqi, A. Khaliq and Q. H. Ansari, On variational-like inequalities, Ann. Sci. Math. Québec 18(1) (1994), 95-104.

- [13] E. Tarafdar, On nonlinear variational inequalities, Proc. Amer. Math. Soc. 67 (1977), 95-98.
- [14] R. U. Verma, Variational inequalities involving pseudomonotone hemicontinuous mappings in nonconvex reflexive Banach spaces, Appl. Math. Lett. 11(2) (1998), 41-43.
- [15] P. J. Watson, Variational inequalities in nonreflexive Banach spaces, Appl. Math. Lett. 10(2) (1997), 45-48.
- [16] X. Q. Yang and G. Y. Chen, A class of nonconvex functions and pre-variational inequalities, J. Math. Anal. Appl. 169 (1992), 359-373.
- [17] J. C. Yao, Applications of variational inequalities to nonlinear analysis, Appl. Math. Lett. 4(4) (1991), 89-92.
- [18] J. C. Yao, Variational inequalities with generalized monotone operators, *Math. Oper. Res.* 19 (1994), 691-705.