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Abstract. In this paper, we prove the existence of solutions to the variational

and variational-like inequalities for pseudomonotone and pseudodissipative and, η-

pseudomonotone and η-pseudodissipative operators, respectively. As applications of

our results, we prove the existence of a unique solution of nonlinear equations, fixed

point problems and eigenvalue problems.
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1. INTRODUCTION AND PRELIMINARIES

Let X be a real locally convex Hausdorff topological vector space with topological dual X∗

and K a non-empty subset of X. Let T : K → X∗ be an operator and η : K × K → X a

bifunction. The variational-like inequality problem (for short, VLIP) is to find x̄ ∈ K such that

〈T (x̄), η(y, x̄)〉 ≥ 0, for all y ∈ K,

where 〈u, x〉 denotes the pairing between u ∈ X∗ and x ∈ X. For further details on VLIP, we

refere to [2, 5, 9-12, 16] and references therein.
∗This research was supported by the National Science Council of the Republic of China.
†Present address: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804,
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When η(y, x) = y − x, the VLIP reduces to the variational inequality problem (for short,

VIP) [7] of finding x̄ ∈ K such that

〈T (x̄), y − x̄〉 ≥ 0, for all y ∈ K.

In most of the results on the existence of solutions to the VIP and VLIP some kind of con-

tinuity assumption on the operator T is needed if it has some kind of monotonicity assumption,

see for example [3-4, 6-8, 12-15, 17-18] and references therein.

The main object of this paper is to establish some existence results for VIP and VLIP

in the setting of non-compact convex set K with pseudomonotone and pseudodissipative and,

η-pseudomonotone and η-pseudodissipative operator T , respectively. As applications of our

results, we prove the existence of a unique solution of nonlinear equations, fixed point problems

and eigenvalue problems without any continuity assumption on the operator T .

We shall use the following notation and definitions. Let A be a non-empty set. We shall

denote by 2A the family of all subsets of A. If A and B are non-empty subsets of a topological

vector space Y such that A ⊆ B, we shall denote by intBA the interior of A in B.

The inverse F−1 of a multivalued map F : X → 2Y is the multivalued map from R(F ), the

range of F , to X defined by

x ∈ F−1(y) if and only if y ∈ F (x).

We shall use the following particular form of Corollary 1 in [1].

Lemma 1.1. Let K be a non-empty and convex subset of a Hausdorff topological vector space E,

and let S : K → 2K be a multivalued map. Assume that the following conditions hold.

(a) For each x ∈ K, S(x) is non-empty and convex.

(b) K =
⋃
{intKS−1(y) : y ∈ K}.

(c) If K is not compact, assume that there exists a non-empty, compact and convex subset C

of K and a non-empty and compact subset D of K such that for each x ∈ K \ D, there

exists ỹ ∈ C such that x ∈ intKS−1(ỹ).

Then S has a fixed point, that is, there exists x0 ∈ K such that x0 ∈ S(x0).

2. EXISTENCE RESULTS

For a given bifunction η : K ×K → X, an operator T : K → X∗ is called:
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(i) η-monotone if,

〈T (y)− T (x), η(y, x)〉 ≥ 0, for all x, y ∈ K;

(i) η-dissipative if,

〈T (y)− T (x), η(y, x)〉 ≤ 0, for all x, y ∈ K;

(iii) η-pseudomonotone if,

〈T (x), η(y, x)〉 ≥ 0 implies 〈T (y), η(y, x)〉 ≥ 0, for all x, y ∈ K,

or equivalently,

〈T (y), η(y, x)〉 < 0 implies 〈T (x), η(y, x)〉 < 0, for all x, y ∈ K;

(iv) η-pseudodissipative if,

〈T (y), η(y, x)〉 ≥ 0 implies 〈T (x), η(y, x)〉 ≥ 0, for all x, y ∈ K,

or equivalently,

〈T (x), η(y, x)〉 < 0 implies 〈T (y), η(y, x)〉 < 0, for all x, y ∈ K.

When η(y, x) = y − x, the definitions of η-monotone, η-dissipative, η-pseudomonotone and η-

pseudodissipative reduce to the definitions of monotone, dissipative [17], pseudomonotone and

pseudodissipative, respectively.

Example 2.1. Let T : R → R be defined as

T (x) =
{

1 : x 6= 1
2 : x = 1.

Then T is pseudomonotone as well as pseudodissipative but it is neither monotone nor hemi-

continuous.

For η(y, x) = y2 − x2, T is also η-pseudomonotone as well as η-pseudodissipative but not

η-monotone.

An example of a pseudomonotone hemicontinuous operator is given in [15] which is not con-

tinuous on finite dimensional spaces.

Theorem 2.1. Let K be a non-empty and convex subset of a locally convex Hausdorff topological

vector space X and let η : K × K → X be a bifunction such that η(x, x) = 0, for all x ∈ K.

Assume that
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(i) T : K → X∗ is η-pseudomonotone and η-pseudodissipative;

(ii) for each fixed y ∈ K, the map x 7→ 〈T (y), η(y, x)〉 is upper semicontinuous on K;

(iii) for each fixed x ∈ K, the map y 7→ 〈T (x), η(y, x)〉 is quasi-convex;

(iv) there exists a non-empty, compact and convex subset C of K and a non-empty and compact

subset D of K such that for each x ∈ K\D, there exists ỹ ∈ C such that 〈T (x), η(ỹ, x)〉 < 0.

Then the VLIP has a solution.

Proof. Assume that the VLIP has no solution. Then for each x ∈ K,

{y ∈ K : 〈T (x), η(y, x)〉 < 0} 6= ∅.

We define a multivalued map S : K → 2K by

S(x) = {y ∈ K : 〈T (x), η(y, x)〉 < 0}, for all x ∈ K.

Then clearly for all x ∈ K, S(x) 6= ∅. From assumption (iii), it is easy to see that S(x) is convex,

for all x ∈ K. Now

S−1(y) = {x ∈ K : 〈T (x), η(y, x)〉 < 0}.

For each y ∈ K, we denote by [S−1(y)]c the complement of S−1(y) in K. From the η- pseu-

domonotonicity of T , we have

[S−1(y)]c = {x ∈ K : 〈T (x), η(y, x)〉 ≥ 0}

⊆ {x ∈ K : 〈T (y), η(y, x)〉 ≥ 0}

= H(y)(say).

From condition (ii), it is easy to show that for all y ∈ K, H(y) is closed in K.

From the η-pseudodissipativeness of T , we have

S−1(y) = {x ∈ K : 〈T (x), η(y, x)〉 < 0}

⊆ {x ∈ K : 〈T (y), η(y, x)〉 < 0}

= [H(y)]c, the complement of H(y) in K.

Hence S−1(y) = [H(y)]c and S−1(y) is open in K. Since S(x) 6= ∅, we have

K =
⋃

y∈K

S−1(y) =
⋃

y∈K

intKS−1(y).
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By assumption (iv), for each x ∈ K \D, there exists ỹ ∈ C such that 〈T (x), η(ỹ, x)〉 < 0, we have

x ∈ intKS−1(ỹ). Then S satisfies all the conditions of Lemma 1.1, hence there exists x0 ∈ K

such that x0 ∈ S(x0), that is,

〈T (x0), η(x0, x0)〉 < 0.

Since η(x0, x0) = 0, we have

0 = 〈T (x0), η(x0, x0)〉 < 0,

a contradiction. Hence the result is proved. 2

Remark 2.1. If X is a reflexive Banach space equipped with weak topology, then the assumption

(iv) in Theorem 2.1 can be replaced by the following condition:

(iv)′ There exists ỹ ∈ K such that lim inf ||x||→∞, x∈K〈T (x), η(ỹ, x)〉 < 0.

Proof. By (iv)′, there exists r > 0 such that ||ỹ|| < r and if x ∈ K with ||x|| ≥ r, we have

〈T (x), η(ỹ, x)〉 < 0. Define Br = {x ∈ K : ||x|| ≤ r}. Then Br is a non-empty weakly compact

and convex subset of X. By taking C = D = Br in assumption (iv) of Theorem 2.1, we get the

conclusion. 2

In view of Remark 2.1, we have the following result.

Corollary 2.1. Let K be a non-empty and convex subset of a reflexive Banach space X equipped

with weak topology and let η : K ×K → X be a bifunction such that it is affine in the first ar-

gument, weakly continuous in the second argument and η(x, x) = 0, for all x ∈ K. Assume

that T : K → X∗ is η-pseudomonotone, η-pseudodissipative and there exists ỹ ∈ K such that

lim inf ||x||→∞, x∈K〈T (x), η(ỹ, x)〉 < 0. Then the VLIP has a solution.

Corollary 2.2. Let K be a non-empty and convex subset of a locally convex Hausdorff topo-

logical vector space X and let T : K → X∗ be pseudomonotone and pseudodissipative. Assume

that there exists a non-empty, compact and convex subset C of K and a non-empty and compact

subset D of K such that for each x ∈ K \ D, there exists ỹ ∈ C such that 〈T (x), ỹ − x〉 < 0.

Then the VIP has a solution.

Remark 2.2. In the results of Browder [3-4], Hartman and Stampacchia [6] (Theorem 1.1),

Tarafdar [13] (Theorem 2 and Corollary), Verma [14] (Theorem 2.2) and Yao [18] (Theorem

3.3), we need continuity/hemicontinuity/continuity on finite dimensional spaces. But in Corol-
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lary 2.2 we do not assume any kind of continuity assumption.

Corollary 2.3. Let K be a non-empty and convex subset of a reflexive Banach space X equipped

with weak topology and let T : K → X∗ be pseudomonotone, pseudodissipative and has the prop-

erty that there exists ỹ ∈ K such that lim inf ||x||→∞, x∈K〈T (x), ỹ − x〉 < 0. Then the VIP has a

solution. Moreover, it T is strongly pseudomonotone then the solution is unique.

Remark 2.3. Corollary 2.3 is different from Theorems 3.1 and 3.2 in [17] in the following ways:

(a) X need not be a Hilbert space,

(b) K need not be closed,

(c) T need not be continuous on finite-dimensional subspaces,

(d) T need not be hemicontinuous,

(e) T is assumed only pseudomonotone and pseudodissipative, need not be monotone.

3. APPLICATIONS

Throughout this section, we will assume that H is a real Hilbert space with its inner product

denoted by (., .).

Let K be a non-empty subset of H. An operator T : K → K is called:

(i) strongly monotone if, there exists a constant α > 0 such that

(T (y)− T (x), y − x) ≥ α||y − x||2, for all x, y ∈ K;

(ii) relaxed strongly monotone if, there exists a constant β < 1 such that

(T (y)− T (x), y − x) ≤ β||y − x||2, for all x, y ∈ K;

(iii) relaxed strongly dissipative if, there exists a constant ν < 1 such that

(T (y)− T (x), y − x) ≥ ν||y − x||2, for all x, y ∈ K;

(iv) strongly pseudomonotone if, there exists a constant γ > 0 such that

(T (x), y − x) ≥ 0 implies (T (y), y − x) ≥ γ||y − x||2, for all x, y ∈ K.
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We now give the following result concerning the existence of a unique solution of a nonlinear

equation.

Theorem 3.1. Let T : H → H be pseudomonotone, pseudodissipative and assume that there ex-

ists ỹ ∈ H such that lim inf ||x||→∞(T (x), ỹ−x) < 0. Then there exists x̄ ∈ H such that T (x̄) = 0.

Moreover, if T is strongly pseudomonotone then the solution is unique.

Proof. It is similar to the proof of Theorem 3.3 in [17].

Remark 3.1. Theorem 3.1 is different from Theorem 3.3 in [17] in the following ways:

(a) T need not be hemicontinuous,

(b) T is assumed only pseudomonotone and pseudodissipative, need not be monotone.

By using the results of Section 2, we establish the following fixed point theorem.

Theorem 3.2. Let K be a non-empty and convex subset of H and T : K → K be relaxed strongly

monotone and relaxed strongly dissipative. Then T has a unique fixed point.

Proof. It is similar to the proof of Theorem 3.4 in [17].

Remark 3.2. Theorem 3.2 is different from Theorem 3.4 in [17] in the following ways:

(a) K need not be closed,

(b) T is assumed relaxed strongly dissipative, need not be hemicontinuous.

Finally, we derive the following existence results for solutions to the eigenvalue problem.

Corollary 3.1. Let K be a non-empty convex cone of H and T : K → K be monotone and

dissipative. Then for any nonnegative real number λ and any z ∈ K, there exists a unique x̄ ∈ K

such that λT (x̄) + z = x̄.

Proof. It is similar to the proof of Corollary 3.7 in [17].

Remark 3.3. Corollary 3.1 is different from Corollary 3.7 in [17] in the following ways:

(a) K need not be closed,
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(b) T is assumed monotone, need not be hemicontinuous.
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