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ABSTRACT

In this paper, we consider implicit vector variational problems which
‘contain vector equilibrium problems and vector variational inequalities
as special cases. The existence of solutions of 1mphcit vector variational
'pro'blems and vector eql.uhbnum probiems have been established. As a
" special case, we derive some existence fesults for a solution of vector
 variational mequahtles We also study the duahty of implicit vector var-
*“iational probléms and discuss the relationship between sofatiotis of dual
and primal problems. Our results on duahty contains known results in
the literature as special cases.
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1. INTRODUCTION

The duality theory has been shown to be useful in mathematical eco-
nomics, mechanics, numerical analysis and calculus of variations (see for
example [8]). In 1972, Mosco [11] gave the dual form of a classical variational
inequality [10] and proved its equivalence with the primal form. It has been
extended by Yang [16] for vector variational inequalities, that is, variational
inequalities for vector-vdlued operators. For further details on’ vector varia-
tional inequalities, we, refer to [9] and references therein, Dolcetta and
Matzeu [7] considered a more general problem known as implicit variational
problem which includes variational and quasi-variational inequalities, fixed
point and saddle points, Nash equilibria of non-cooperative games as special
cases. They also studied its duality and applications. The exnstence of solution
of this problem was studied by Mosco [12]. '

In this paper, we consider implicit vector variational problems, that is,
implicit variational problems for vector-valied bifunctions, which contain
vector equilibrium problems and vector variational inequalities [9] as special
cases. We first establish the existence of solutions of implicit vector varia-
tional problems and vector equilibrium problems. As a special case, we then
derive some existence results for a solution of vector variational inequalities.
We also study the duality of 1mph01t vector variational problems and discuss
the relationships between solutions of dual and primal problems. Our results
on duality contains known results in the literature as special cases.

2. PRELIMINARIES

Let Y'bea topologxcal vector space. A subset C of ¥'is called a cone fif,
AC S C, forall A > 0. It is easy to see that if a cone is convex then we further
have C+ C = C. A cone Ci is called pointed if. cn (=C) = {0). Also, a cone
C is called proper if, C # Y. Let C be a closed and convex cone in ¥ with
non-empty interior, say int C # #. Given x,y € Y we consider the followmg
(partial) ordering relations: :

X<cy & y—-xe€C(; XZcy & y—x¢C;
xXz2cy & x—-yeC;  xZcy & x—y¢C;
X<mcy & y—xe€intC; XZimcV € y—x¢intC;
XZincy © x—yeintC; XZintcy © x—y¢intC.

For two given subsets A and B of Y, the following (partial) ordering
relationships on sets are defined as follows:

A SCB o x <c¥, for all x € Aye B, '
AZcB & x£cy, forallxe 4,y € B;
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A ZmcB € X <incy, for all x € A,y € B;
AZinwcB & xZncy, forallxe A4,y € B.

A topological vector space Y with a closed and convex cone C which
induces the (partial) ordering defined as above is called an ordered topological
vector space and it is denoted by (Y, C).

Let X be a topological vector space, K a non-empty and convex subset
of X and (7, C) an ordered topological vector space. Given two bifunctions
v,2: K x K — Y, we consider the followmg implicit vector variational prob-
lem (for short, IVVP): :

Find x € K such that

0%, B) + g5, ) Fimc 95, ) +8(%,y), forall y e K. )

When K =X,Y =R and C =R_, IVVP reduces to the problein of finding
x € X such that

O(%, %) + g(%, %) < ¢(X,y) + g(%,y), forallyeX, - )

which is known as the implicit variational problem (for short, IVP). It includes
variational and quasi-variational inequalities, fixed point and saddle points,
Nash equilibria of non-cooperative games as special cases. The existence of
solution of IVP was studied by Mosco [12], while Dolcetta and Matzeu [7]
discussed its duality and applications. -

When ¢(x, x) = g(x, x) = 0, for all x € K, IVVP reduces to the following
vector equilibrium problem (for short, VEP) considered by Ansari [1], Bianchi
et al. [3] and Tan and Tinh [14]:

Find x € K such that

@(%,y) +8(X,y) £inec 0, forally e K. ()

Let L(X, Y) be the space of all continuous linear operators from Xto Y
and p,q: K - L(X, Y) nonlinear operators. We denote by (/, x) the evalua-
tion of /e L(X,Y)atxe X. When ¢(x,y) = (p(x),y — x) and, g(x,y) =
{(g(x),y — x),forall x,y € K, VEP reduces to the following problem: -

Find x € K such that

(P(%) +4(x),y — X) £ imc0, forallyek. @

It is known as the strongly nonlinear vector variational inequality problem (for
short, SNVVIP) considered and studied by Ansari [1]. For Y =R and
C =R,, SNVVIP was studied by Mosco [12].

Now we mention some notation and results which will be used in the
sequel.
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Let K be a non-empty and convex subset of X. A function f: K — Y is
called C-lower semicontinuous [3] on K if, for all y € Y, the (lower level) set

L(y) = {x € K: f(X) Zintc ¥}

isclosed in K. fis called C-upper semicontinuous [3] on K if, for all y € Y, the
(upper level) set

U®y) = {x € K:f(x) Zimc ¥}

is closed in K. «

A function f: K — Y is called C-continuous on K if, it is both C-upper
semicontinuous and C-lower semicontinuous.

We recall that a function f: K — Y is upper semicontinuous with respect
to C at a point x* € K [14] if, for any neighborhood V of fix*) in Y, there
exists a neighborhood U of x* in X such that

fx)yeV—-C, forallxe UNK.

Furthermore, f is upper semicontinuous with respect to C on K if, it is
upper semicontinuous with respect to C at each x € K. :

On the lines of the proof of Lemma 2.3 in [3], it is easy to show that a
function f: K — Y is C-upper semicontinuous on X if and only if it is
upper semicontinuous with respect to C.

If the functions f;,/;: K — Y are C-upper semlcontmuous, then it can
be easily proved that the function f;+f> is also C-upper semicontinuous
(for C-lower semicontinuous case, see [3, pp. 531-532)).

A function f: K — Y is called C-quasicanvex [3] if, for all y € Y, the set

{x e K: f(x) <c v}
is convex. fis called C-quasiconcave if, for all y € Y, the set
{x € K: f(x) 2cv}

is convex.

If fis C-quasiconvex (C-qu-asiconcave) then the set

{x € K: f() Simev} ([x € K: £() Zinc¥), respectively)

is also convex (see, for example [3]).

A bifunction g: K x K — Y is called C-diagonally convex if, for any
finite subset {x,...,x,} C K and any xo = Y 7, A;x;, where A; > 0 for all
i=1,...,n and ZHA =1, we have

i=1

g(x0= xO) thC Z A-zg (an xi)

i=1

Similarly, g is called C-diagonally concave if, —g is C-diagonally convex.
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A bifunction g: K x K — Y is called strongly C-diagonally convex if, for
any finite subset {x;, ..., x,} C K and any xo = Y.}, A;x;, where A; > 0 for all
i=1,...,nand Y ;A =1, we have : ;

n
&(x0, Xp) <c Z)»ig(xo,xi)-

Similarly, g is called strongly C-dzagonally concave if, —g is strongly
C-diagonally convex.

Remark 2.1. (a) If ¢: K'x K — Y is C-diagonally convex (concave) and
g: K x K — Y is strongly C-diagonally convex (concave), then ¢+ g is
also C-diagonally convex (concave).

(b) When ¥ =R and C =R, the definition of C-diagonal convexity (con-
cavity) reduces to the deﬁmtlon of diagonal convex1ty (concav1ty) [17] of a
function.

Let 4 be a set, we shall denote by 2 (TI(A)) the family of all subsets
(respectively, non-empty subsets) of 4 and by #(4) the family of all non-
empty finite subsets of 4. If 4 and B are subsets of a topological
space stich that B C A4, we shall denote by int 4B (¢l (B) the interior (closure,
respectively) of B in A. If A is a subset of a vector space, co(A) denotes the
convex hull of 4.

A multi-valued map T: K — II(K) is called a KKM-map if, for every
finite subset {x,,...,x,} of K, co({xy,...,x,}) C UL T(x).

- The following result of Chowdhury and Tan [5] will be used in proving
the existence of a solution of IVVP.

Lemma 2.1. [5] Let K be a non-empty and convex subset of a topological
vector space X. Let T K — II(K) be a KKM-map such that

@) clgT(y)is compact for some y €k,

(b) foreach 4 e F(K)withje Aandeachye co(A) T( y) Nco(A) is
closed in co(A4), and

(c) foreach 4 € #(K) with j € A4,

(clK( M T( y))) ﬂcc(A) = ( M 7¢ _Y)) [ co(4).

yeco(A) - \yeco(4)

Then ‘ﬂyeK T(y) # 9.

3. EXISTENCE RESULTS

Now we are ready to derive the following existence result for a solution
to IVVP.
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Theorem 3.1. Let X be a non-empty and convex subset of a topological vector
space X, (Y,C) an ordered topological veetor space with C. proper, and
¢,8: K x K — Y bifunctions. Assume that the following conditions hold.
(i) ¢is C-diagonally convex. ‘

(i) g is strongly C-diagonally convex.

(iii) For each 4 € #(K),¢ and g are contmuous on co(A)

(iv) " For each 4 € #(K), and each x,y € co(4) and every net {xo,},,ep

in K converging to x with

(x5 Xo) +8(Xqs X)) Zintc 9%, Ay + (1 = 1)x)
+8xw hy +(1 =100,
forall @ € " and all A € {0; 1], we have

0%, %) + 8%, %) Zimc 9(%) +8(x, ).
) 'I‘here exist a non-empty, closed and coxnpact subset B of K and
~ jeB such that
005, %) + g(x, x) :»,,,w qo(x, 2 + g(x, y) for st . K\B..
Then IVVP has a solution £ € B. - |

Proof. For each y € K we define a multi-valued mapT K —> I'I(I'(‘:)\ by 1
T(y)=1{xeKk: (0(x,x) + 8%, %) Zimc 9x, 7) +g(x,y)}

Then clearly for each y € K, T(y) is non-empty, since y € T( y) by the prop-
erness of C. By (1) and (i), T'is a KKM~map ‘We also have

@ T c B, 50 that clKT( ,17) C clKB ‘Band hence clKT( y)is com-
pact in K;
(b) Foreach 4 € #(K) thh y € A and y € co(A4), -

T(y) N co(4) = {x € co(A): p(x, x)
+8(%, %) Zintc 9%, ) + g(x, y)}

is closed in co(A) by (iii);

(c) Foreach 4 € #(K)with 7 € 4, let x € (clg(n Ea,(A)T( M) N co(A),
then x € co(4) and there is a net {x,}ger i Nyeoqy T(¥) such that
Xy = x. For each y € co(4), since Ay + (1 — A)x € co(4), for all
A €[0,1], we have x, € T(Ay+ (1 —A)x), for all @ € " and all
A €[0,1]. This 1mphes that

(o(xa’ Xq) +g (Xas xa) thc ¢(xwky + (1 - )‘)x)
+g(xa, Ay+(1-2x)
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for all @ € I" and:all'x € [0, 1]. By (v), we have ..
@(x, X} + 8(x, x) Eimc '0(x, y) + 8(x,)). . -
5. It follows that: x ez(;ﬂye;,b(A')'T(y))ﬂcoﬁAe); Hence. i.k |

. (clK ey T(y)))nca(A)-. ( () T(y)) nco(A)

scow) crer 4 Yeco(4),

By Lemma 2.1, wc have EKT(y) # ﬂ Hence there extsts Xe ﬂyeKT (€) and
therefore . . ST

AL

0%, %) + (%, %) Fimc WE)) +8(%y), forall ye K,
from whwh 1t follows that X 1s a solutlon of IVVP - f: : ‘ n

When qo(x,y) -‘-f(y) and g(x x) 0 for aIl X, y e K we hﬁve the fol-
lowing result.

Theorem 3.2. Let K be a non-empty and convex subset of a topologlcal vector
space . X,(Y,C) an ordered topological , vector space w1th C 'proper,
f:K — Y a function” and g K X K - Y a bifunctlon Assume that the
followmg condmons hoId o

() For each xe K yr—>g(x, y) + f ( y) is: C-quasxconvcx
(i) For each 4 € #(K), f is C-lower semicontinuous on co(A4).
(iif) . For each:4 € #(K) and for each'y € co(A), x+»g(x, y) is C-upper
semicontinuous on co(A4). . ‘
(iv) Foreach A € #(K) and each x, y-€ to(4) and every net {x,},¢r in
K converging to x w1th

f (xa) f Oy +(1- A)x) Z.mc g(xa, ly + (1 - k)x),
for a11 a el andall A €[0,1], we have
J&) = () Zimc 8(x, ).

(v) There exist a non-empty, closed and compact subset B of K:and
y € B such that

, f(x) - f() thcg(xa 37), for all x e K\B o
Then there exists % € B such that '

F® =1(3) Fmeg@®y), - forallyeK.
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Proof. It is on the lines of the proof of Theorem 3.1. O

Remark 3.1. Theorem 3.2 can be viewed as an existence of Theorem 1 in [5]
for vector-valued case.

We need the following result of Ding [6] in order to prove the existence
of a solution to the vector variational inequalities.

Lemma 3.1. [6] Let X and Y be topological vector spaces and let:L(X,Y) be
equipped with uniform convergence topology 8 (see [6, pp. 79-81]). Then the
bilinear form (.,.) : L(X, Y) x X — Y is continuous on (L(X, Y),8) x X.

When ¢(x,y) = f(y) and g(x,y) = (p(x),y ~ x), for all x,y € K, where
p: K — L(X,Y)is a nonlinear operator, then we can easily derive the follow-
ing result from Theorem 3.2.

Corollary 3.1. Let K be a non-empty and convex subset of a topological
vector space X, (Y, C) an ordered topological vector space with C proper,
f:K — Y a function and p: K — L(X,Y) a nonlinear operator. Let L(X,Y)
be equipped with uniform convergence topology. Assume that the following
conditions hold.

(i) fis C-quasiconvex.
(i) For each 4 € #(K), f is C-lower semicontinuous on co(A).
(iii) For each 4 € #(K),p is continuous on co(4).
(iv) Foreach 4 € #(K) and each x, y € co(A4) and every net {x,},cr in
K converging to x with :

fxa) =y + (1 =2)x) Zinec (PO, Oy + (1 = M)x) = X,),
for all € I" and all A € [0, 1], we have
SO = f() Zinec (P(x),y — x).

(v) There exist a non—empty, closed and compact subset B of K and
y € B such that :

S(xX) = f(P) Zimc (p(x), 7 — x), for all x & K\B.
Then there exists 'x € B such that

S = () Zinc (pP(R),y — %), for ally e K.

Remark 3.2. In Theorems 3.1 and 3.2 and Corollary 3.1, X need not be
Hausdorff.

In order to establish some emstence results for a solution to VEP, we
need the following result due to Ansari and Yao [2].
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Liemima 3:2. [2): Let: K-be.a non-empty and cofivex subset of a Hausdorff
topological vector space’X and S, T : K ~» 2X be two multisvalued maps.
Assume that the following conditions hold

(a) Foreach xe K co(S(x)) C T (x) and S(x) is non-empty

(b) K =UlintgS™'(3): y € K). o

(c) If Kis not compact, assume that there exist a non-empty, compact
and convex subset B of K and a non-empty and. compagt subset D
of K such that for each x € K\D there exists y € B such that
x € intgS~(H). I TR LR TS Y

Then there exists x, € K such that x, € T(x,).
Now we can state and prove the following existence result fora solutlon
to VEP. ¥

Theorem 3 3 Let K be a non-empty and convex subSet of a Hausdorﬁ‘
topologlcal vector space X, (Y C),'an ordered topologwal Vector ‘space
with C proper and ¢ ¢.g: K x K5 Y bifunctions. Assume that tHe followmg
conditions hold.

(i) For each x,y € K, p(x; )+ 2(%, ¥) Sinec 0 ﬁnpliés 8(,%) Zimc 0.

(i) . For each fixed yEK, xr>g(x,y) is C—quas1conqa.ve and C-upper
semicontinuous on K.

(iii) For each fixed y € K, x> g(x, y) is C-upper semicontinuous on X.
(ivy If K is not compact, assume that there exist a, non-empty,
compact and convex subset B of K and a non-empty and compact
subset D of K such that for each X € K\D there exists j € B

such that . T .

o(x, 7) + 8(x,7) <intcO.
Then V'EP has a solutlon

Proof. Assume’'that thé conolumon of this theorem is‘not trie. Then for each
x € K, the set

{y € K:p(x, ) + 8(%, ) Simc 0} # 8.
We define two multi-valued maps S, T:K — 2X by
500 ={y € Kigx) +805)) Smc 0}
and

- T ={yeK;g(yx); thO} for all x.€ K.
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Then-clearly for allde K;8¢x) # §. Let {y1,...,,} be'a firtite subset of §(x)
and®; >Oforalli=1,..c,nwith 37 A& L Then oo

Ax, V) £ &%) Sime 0, for all .

U (XY B O forall i

Since g(.,x) is C-quasiconcave, we have

L ‘g'("E%;y@’“)‘zmco iy

i=1

58 2uey MiYip € T(x) and therefore co(S(x)) C T(x), forallx e K.

... Since ¢(..y) and g(,y) are C-uppér semicontinudus and“so (., )+

g(:,7) is alsq C-upper semicontinuous, Thetefore the complement of §~'( »)
in K, ‘ T R RO L N A S N A R ST

[ST' O = {x.6 Kin(%, )+ 865,) Zims O}, i
is'closed in ‘K. Hence '$“!(y) is open in K. Since S(¥) # 8, for all x € X,
we have . ~ L

Lk=UUsT)2Jintes M)
T AL o
By (iv), for each x € K\D, there exists € B such that -

x € S7(H) = intgS7L(H).

Hence all the conditions of Lemma 3.2 are satisfied and therefors there exists
xo € K such that xy € T(x,), that is, g(xg, X) >inec 0, Which contradicts to
the fact that 0¢.int C because C is proper. This completes the proof. [

From Theorem 3.3 we can derive the following existence regﬁlf for a
solution to SNVVIP. -

Corollary 3.2. Let K be a non-empty and convex subset of a Hausdorff
topological vector space X, (¥, C) an ordered topologicil véctor spaee with
C proper and p,q: K — L(X, Y) two continuous nonlinear operators. Let
L(X,Y) be equipped with unifotm convergence topology: Assume that the
following conditions hold.

(1) For each x,y € K, (p(x)+ ¢(x), y = X) Sinec 0 implies (g(»), x = y)
Zintc 05 - » .
(ii) For each y € K, the function x> (g{x), y —x)"is C-quasiconvex;
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(ui) .H K is not compact, assume that there exist a:non-empty, compact
- gnd convix subset: Bof K.and a non-empty and ‘compict subset’ D
of K such that for each x € K\D thcre ex1sts y €B such: that

AR SR

(p(x)+q($c),x y)‘_.mc 0.

Then SNVVIPhasasolutlon Clag Dol e o ey g

T i, ¢ e SN ETy

P

VARIATIONAL PROBLEMS

"Lt 'X'bé a' Bunach 'spacé and (¥, C)'be an ordéred Banach' space with
the proper, closed and convex cone € stch thét int O3 Given two bifiine-
tions ¢,g: X x X — Y, then we conmdcr thc followxng tmplzat vector varia-
tional problem: Ao A e Y ; Sy

(P) Find X € X:¢(X,X) + g(X, X) # intc &%, y) + &(%, y), forallye X.
Let g: X — Y and y € X. If a linear operator / € L(X, Y) satisfies' '+~

(Lh) Zinec 8h+7) =g(y), forall heX,. -~ -

then / is said to be a weak subgradient of g. at y [161 The set of all weak:
subgradients of g at y is denoted by 3”g(y) and g is said to be weakly sub-
differentiable at y.[16] if, @¥g(p) %0, - < R

Let A C Y. Denote

SUpgcA = {u € cdlA: (4 — ) NintC = B},

where clA 1s the closure of A In the case that Y & R and C [0/ oo), we have

et ;‘* Sup i (4 ol (A-{u})mmc ,m;eg R
Pintc OO, {ueclA (A--{u})r‘lmt ¢ __ﬂ}_& , »: m

Lat. g;fX - Yand / € L(X,T), The vector congugate ,functlon [16],
dcnoted as Zeup» of g at y'is defined by T s

8rop( D= Supigc{(y) —8()):y € x}. .

ﬁ Let Y€ X The vector btconjugate funcuon, dqnoted as gamp of 4 at >, 1s
defined’by = |

" g = Sube U{(l »- gsup(l) le Lix, Y)}
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Note that both glup and ght, are multi-valued maps and g3,,: L(X, ¥) =27,
Eoup: X — 2%, Th:roughout this section, we: assume - that Zeup(l) # B and

gsup(y) #0. :
Let g: X - Y and yeX.gis sald to be externally stable at y if,

8(y) € gaup(¥)-
The external stablhty was introduced in [13] when the vector conjugate
function is defined via the set of efficient points.

Lemma 4.1. Let g: X — Y and y € X. Then
led"g(y) & Ly -gWegu®. = ©)

Proof. It follows from the definitions of the vector conjugate function and the
subgradlent that I € 3g(y) if and only if ‘

(I, h) thC g(h +7)—g(y), for all he X ,
equivalcntly,
(Lh+y) —gh+y) Zinc (,y) —8(»), forallheX,

if and only if (/,y) — g(y)&gsup(l)asyeX e ‘e 0

For a fixed y € X,¢9(y,.) : z-—>qo(y,z) is .convex. [13] if, .
@(y, 221 + (1 = A)z3) <¢ Ap(y,z1) + (1 — M)Ay, 22),

for all 2,5 € X and 4 € (0,1)..

It is shown in [4] that if ¢ y, J: z-—-np( y,2) is convex, then
3" o(y,2) # P, where 3"¢(y,2) denotes the weak subdifferential of 2 with
respect to its second component.

We now define the dual problem of (P) as follows.

(D) Find ¥e X, — "€ dg(x,%) and y € T l*) satlsfymg (l"’ x)—
(X, X) = y such that

J—’ - (l*ri) ZintC ‘p:up(j’l) - (19 i)’ foralll e L(X9 Y)

(D) is called the dual implicit vector variational problem and (%, I*) is called a
solution of (D). The following two results show the relationships between
solutions of the implicit vector variational problcm (P) and the dual 1mp11c1t
vector variational problem (D). '
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Theorem 4.1. Assume that g(y,.) and ¢(y,.) are convex for each fixed y € X
If % is a solution of (P) and ¢(X,.) : x> o, x) is externally stable thcn there
exists [* € L(X, Y)f?iuc\h t*ha%t\(x&, ™yis a kolut;ofv of '(D) i e Y

aomd el R

Proof. Let % be a 4 lation of (P). Then
CO (%, ) + 8%, %) Fime 9%, 2) +8(%,2), for dpER ) T
Let 0" be the Zere operator fromX toY. Then ot o rised b @

s §
1;}"*«.H ! (LT B

(0°, ) Zimc: lof2) + 82 2] = [905.9) +g(3c,’x)1, forall ze X.

A B it
e i E WAy e §UE W B O
'O ol S SIS 1 B R SRR

By the definition of 3"g(», z), we Eave

8”(¢(x,x)+g(x, ). Y ey it B e 7 nnil

Ititfg]kwis from {15} ehat o et st gt buoleido el et
0D+ £ 9) € "0t 9) + D). R

. I’IICIICEi Y sresnliet ol Yot AR S oot SrE ke OG0 T
{0 O"‘ € aw (x9 -x) '+' a g(X, x)’ N L EERPE W
or equlvalently, there exists I* € L(X Y) such that y e o
FUE D W ‘f 1 4

Y e (% BN (=D g(x,x)) S
Then from (5] wé ‘obtain SRR

(", %) — 0%, %) € Gup(%, ), N S NENE Py g
("'l*’ 5&) - 8(55, i) € g:up(i9 - l*)

As @(%,.) : x+>@(%, x) is externally stable, '
OF, %) € gin(®, %) = Supimc {(L%) = tp,up(x,l) ’kl e‘L‘(ZX Y)} o

Thus T TP L E e

e tp(ﬁ,x) Hisic (l X)ie 'ﬂmp(x,l), for ail le L(x, ) L

From (6), there exists y € ‘Psup(X, l*) suaf‘{l{;t h i_w o o

eyt Yoy
SEOInT T TG

el

that 1s,

(O(i,.i') =(l*,)'c)._f ‘
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A S S I L PN N i [N
Sa K RS FITIIES RO S NN N . By - s dnd J
.

( 5= 5 f_mc ek - m.(xd), forall e LX.T)
(l* x) Zintc ‘Psup(xy D-{, x), fOl' all IVE L(X, Y) L

el e Foge

Thus (%,I) is a solutionof D). . . .~ - 0O
Theorem 4.2. Assume that g(y;.) and ¢(3,.) are.convex for each fixed
yeX.If (x, l*) isa solutlon of‘ (D) and

(ol ) + 205, ) = Pl D) + a”g(f ;)

then X is a solution of (P). B I R
Proof. This is obtained by inverting the reasoning in. the ;proof of Theorem
4.1 step by step. o e O

It can be shown that if the convex cone C has the following property:,

afmch = azch, N )
then we can prove that e T PO S
POED+eE D) = UED+TEED. @
In fact, let /; € 3"¢(x, %), 1, € 3"g(x, J'c) Then By (»4, fq};ra{;y zeX, e

We have
o & X +2) 2c oX,X) + (I, 2)
and
g(x, x + z) >c g(x, X) + (lz,z)

Thus by convex1ty of C , t‘ . ( "
O(X, X+ 2) + g(X, X + 2) >¢ o(%, X) + g(X, X) + (I} + I, 2), for all z "X

So I} + 1, € 3"(¢(*%, X) + g(X,x)). Noting the inclusion in other direction
holds (see [15]), the equality (8) holds
Remark 4.1, Theorems 4.1 and 4 2 are extensxons of Theorem 1 m [7] for
-vector-valued bifunctions.

Indeed, let Y=R and C=R,. Then (D) is rcduced to find
x € X, I'" € X* such that —I* € dg(x, ) and

(p*(i,l*)—-(I*,J?)S(p*(i,l)-(l,.i), for alllGX*,

i
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where 3g(x, X) and ¢*(%,I") are convex subdifferential and convex conjugate
functions, respectively [8]. This is a dual problem of IVP which was studied
by Dolcetta and Matzcu [7].
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