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1. Introduction and formulations

Let X andY be real Hausdorff topological vector spaces and let〈·, ·〉 : X × Y → R

be a continuous bilinear form. We denote by 2X the family of all subsets ofX. Let C be
a nonempty subset ofY andT : C → 2X be a multivalued map with nonempty values.
Following the terminology of Giannessi[9] (see also[14]), we recall the following Minty
and Stampacchia variational inequality problems:
TheMinty variational inequality problemis the following:

(MVIP)

{
Find ū ∈ C such that for allv ∈ C and for ally ∈ T (v),
〈y, v − ū〉�0.

That is,ū ∈ C is a solution of (MVIP) if and only if
inf 〈T (v), v − ū〉 : = inf

y∈T (v)〈y, v − ū〉�0 for all v ∈ C.

The Stampacchia variational inequality problemcan be formulated as follows:

(SVIP)

{
Find ū ∈ C such that there exists̄x ∈ T (ū) satisfying
〈x̄, v − ū〉�0 for all v ∈ C.

If the multivalued mapT has compact values, then (SVIP) reduces to findū ∈ C such that
sup〈T (ū), v − ū〉 := sup

x̄∈T (ū)
〈x̄, v − ū〉�0 for all v ∈ C.

In the last decade these two problems were extensively studied by many researcher, see for
example[1,2,7,10,11,14,20,19]and the references therein. It is well known that abovemen-
tioned problems play a vital role in nondifferentiable optimization problems, economics,
game theory, mechanics etc; see for example[1,2,11,18,20]and the references therein.
Let T : C × C → 2X andF : X × C × C → 2R be multivalued maps with nonempty

values. We consider the followingStampacchia type generalized implicit variational in-
equality problem:

(SGIVIP)

{
Find ū ∈ C such that
supF(T (ū, ū), u, ū)�0 for all u ∈ C.

WhenF is a single-valued map, then (SGIVIP) reduces to the followingStampacchia
type implicit variational inequality problem:
Let f : X × C × C → R be a given function.

(SIVIP)

{
Find ū ∈ C such that
sup

x̄∈T (ū,ū)
f (x̄, u, ū)�0 for all u ∈ C.

WhenY =X∗ (the topological dual ofX) andf (x, v, u)= 〈x, v− u〉 for all x ∈ X∗ and
u, v ∈ C, (SIVIP) reduces to the followinggeneralized variational inequality problem:

(GVIP)

{
Find ū ∈ C such that
sup

x̄∈T (ū,ū)
〈x̄, u− ū〉�0 for all u ∈ C.
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Chen[6] established an existence result for a solution of (GVIP) for semi-monotone multi-
valued map, that is, multivalued map which is completely continuous in the first argument
and monotone in the second argument. The semi-monotone operators occur in the theory
of nonlinear elliptic operators in divergence form which are monotone only in those terms
in the principal part, that is, the highest order terms. Kassay and Kolumbán[10] improved
the results of Chen[6]. They considered themultivaluedmapTbeing pseudomonotone (see
[19]) in the first argument and having certain kind of continuity conditions in the second
argument. Such types of multivalued maps are calledsemi-pseudomonotone.
We note that (GVIP) contains many known variational inequalities for multivalued maps

studied in[1,2,7,14,20,19]and references therein.
From the above special cases, it is clear that our (SGIVIP) and (SIVIP) are more general

and unified one.
Wealso consider the followingMinty type generalized implicit quasi-variational inequal-

ity problem:

(MGIQVIP)

{
Find ū ∈ C such thatū ∈ B(ū) and
inf F(T (v, ū), v, ū)�0 for all v ∈ A(ū),

whereA,B : C → 2C are multivalued maps with nonempty values.
WhenF is a single-valued map, then (MGIQVIP) becomes the followingMinty type

implicit quasi-variational inequality problem:
Let f : X × C × C → R be a given function.

(MIQVIP)

{Find ū ∈ C such thatū ∈ B(ū) and
inf

ȳ∈T (v,ū) f (ȳ, v, ū)�0 for all v ∈ A(ū).

WhenY = X∗ (the topological dual ofX) andf (y, v, u) = 〈y, v − u〉 for all y ∈ X∗
andu, v ∈ C, (MIQVIP) reduces to the followingMinty type generalized quasi-variational
inequality problem:

(MGQVIP)

{Find ū ∈ C such thatū ∈ B(ū) and
inf

ȳ∈T (v,ū)〈ȳ, v − ū〉�0 for all v ∈ A(ū).

WhenA(u)=B(u)=C for all u ∈ C, then (MGIQVIP), (MIQVIP) and (MGQVIP) are
calledMinty type generalized implicit variational inequality problem, Minty type implicit
variational inequality problemandMinty type generalized variational inequality problem,
respectively.
In Section 2, we present basic definitions, notations and results which will be used in the

sequel.Recently, Luc[17] introducedaweaker concept of pseudomonotonicity, calleddense
pseudomonotonicity, andextended the classicalHartman–Stampacchia theorem[12] for this
concept. In Section 3, we extend the notion of dense pseudomonotonicity for multivalued
maps and establish several existence results for a solution of (SGIVIP). As consequences
of our results, we derive the existence results for a solution of (GVIP) under dense pseu-
domonotonicity assumption. The results of this section contain the results of Luc[17] and
Kassay and Kolumbán[10] as special cases. In Section 4, we establish an existence result
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for a solution of (MGIQVIP) by using an equilibrium theorem of Lin et al.[16]. Finally,
we show that the classical existence result concerning Minty variational inequalities with
monotone operators is an easy consequence of our results. The results of this section also
include the results of Lin et al.[16] as special cases.

2. Preliminaries

LetD be a nonempty subset of a topological vector spaceX. The interior ofD, the closure
of D and the convex hull ofD are denoted by intD,D and coD, respectively. Throughout
the paper, all topological spaces are assumed to be Hausdorff.

Definition 2.1. LetX andYbe topological spaces. A multivalued mapT : X → 2Y is said
to be

(a) upper semicontinuousif for each closed setD ⊆ Y , the setT +1(D) = {x ∈ X :
T (x) ∩D �= ∅} is closed inX;

(b) lower semicontinuousif for each open setD ⊆ Y , the setT +1(D) is open inX;
(c) continuousif it is both upper and lower semicontinuous.

The following lemmas will be used in the sequel.

Lemma 2.1(Lin andYu[15]). LetX andY be topological spaces. LetF : X × Y → 2R

andS : X → 2Y bemultivaluedmaps with nonempty values and letm(x)=supF(x, S(x))
andM(x)= {y ∈ S(x) : m(x) ∈ F(x, y)}.
(a) If bothF andS are lower semicontinuous, thenm is also lower semicontinuous.
(b) If bothF andS are upper semicontinuous with compact values, thenm is also upper

semicontinuous.
(c) If bothF andS are continuous with compact values, thenm is a continuous function

andM is an upper semicontinuous and closed multivalued map.

Lemma 2.2(Aubin and Cellina[4] ). LetX andY be topological spaces and letT : X →
2Y be a multivalued map.

(a) If X is compact andT is upper semicontinuous with compact values, thenT (X) is
compact.

(b) If Y is compact andT is closed, thenT is upper semicontinuous.
(c) If T is upper semicontinuous with closed values, thenT is closed.

Definition 2.2. LetK be a nonempty subset of a topological vector spaceX. A multivalued
mapT : K → 2X is said to be aKKMmapprovided co(A) ⊆ T (A)=⋃

x∈AT (x) for each
finite subsetA of K.

We shall use the following Fan-KKM theorem (see[8]).
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Theorem 2.1(Fan [8] ). LetK be a nonempty subset of a Hausdorff topological vector
spaceE.Assume thatG : K → 2K\{∅} be a KKMmap satisfying the following conditions:
(i) For eachx ∈ K,G(x) is closed;
(ii) For at least onex ∈ K,G(x) is compact.
Then

⋂
x∈KG(x) �= ∅.

Recall the following convexity concepts for multivalued maps.

Definition 2.3. Let K be a nonempty convex subset of a topological vector spaceE, Z a
topological vector space andD a closed convex cone inZ. A multivalued mapF : K → 2Z

is said to beD-convex if for everyx1, x2 ∈ X and� ∈ [0,1],
F(�x1 + (1− �)x2) ⊆ �F(x1)+ (1− �)F (x2)−D.

Definition 2.4 (Ansari andYao[3] ). LetEandZbe topological vector spaces,Xanonempty
convex subset ofE, andP : X → 2Z a multivalued map with closed convex cone values.
Themultivaluedmapf : X×X → 2Z is calledPx-quasiconvex-likeif for all x, y1, y2 ∈ X
and� ∈ [0,1], either

f (x, �y1 + (1− �)y2) ⊆ f (x, y1)− P(x)
or

f (x, �y1 + (1− �)y2) ⊆ f (x, y2)− P(x).

We need the following result on the existence of maximal elements which is a special
case of a result of Deguire et al.[7].

Theorem 2.2. LetE be a topological vector space andC be a nonempty convex subset of
E. LetS, T : C → 2C be multivalued maps satisfying the following conditions:

(i) For eachu ∈ C, coS(u) ⊆ T (u).
(ii) For eachu ∈ C, u /∈ T (u).
(iii) The setS−1(v)= {u ∈ C : v ∈ S(u)} is open for allv ∈ C.
(iv) If C is not compact, then there exist a nonempty compact convex subsetD of C and

a nonempty compact subsetK of C such that for eachu ∈ C\K, there exists̃v ∈ D
such thatu ∈ S−1(ṽ).

Then there exists an̄u ∈ C such thatS(ū)= ∅.

We shall use the following theorem to prove the existence of a solution of (MGIVIP).

Theorem 2.3(Lin et al. [16]). LetX be a real Hausdorff topological vector space and
C be a nonempty convex subset ofX. Let f, g : C × C → R be functions satisfying the
following conditions:

(i) For all u ∈ C, g(u, u)�0.
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(ii) For each fixedv ∈ C, the functionu �→ f (u, v) is upper semicontinuous.
(iii) For all u, v ∈ C, f (u, v)<0 impliesg(u, v)<0.
(iv) For eachu ∈ C, the set{v ∈ C : g(u, v)<0} is convex.
(v) There exist a nonempty compact setK ⊆ C and a compact convex setD ⊆ C such

that for everyu ∈ C\K, there exists̃v ∈ D with f (u, ṽ)<0.
Then there exists an̄u ∈ K such thatf (ū, v)�0 for all v ∈ C.

3. Existence of solutions of (SGIVIP)

Throughout the paper, unless otherwise specified,X andYare assumed to be Hausdorff
topological vector spaces.
We recall the following definition of segment-dense set which was introduced by Luc

[17].

Definition 3.1 (Luc [17]). Let K be a convex set inX andK0 a subset ofK. We say that
K0 is segment-dense in Kif for eachx ∈ K there can be foundx0 ∈ K0 such thatx is a
cluster point of the set[x, x0] ∩ K0, where[x, x0] denotes the line segment joiningx and
x0 along with end points.

It is clear that every segment-dense subsetK0 inK is also dense but the converse statement
need not be true. Luc[17] provided an example for a dense set which is not segment-dense.
Here we give another simple example of a dense set which is not segment-dense.

Example 3.1. Let K be the two dimensional Euclidean spaceR2 and defineK0 to be the
set

K0 := {(p, q) ∈ R2 : p ∈ Q, q ∈ Q},
whereQ denotes the set of all rational numbers. Then, it is clear thatK0 is dense inR

2.We
show that it is not segment-dense inR2.

Letx=(s, t) ∈ R2 such that bothsandtare irrational numbers.Then foreveryy=(p, q) ∈
K0, the intersection of the line segment[x, y] with K0, [x, y] ∩K0 = {y}. Sox cannot be
a cluster point of the set[x, y] ∩K0. HenceK0 is not segment-dense inR2.

Definition 3.2. LetCbe a subset ofYandC0 be a segment-dense set inC. LetT : C×C →
2X andF : X × C × C → 2R be multivalued maps with nonempty values.T is said to be

(a) pseudomonotone in the first argument with respect toF if for all u, v ∈ C,
supF(T (u, u), v, u)�0 implies supF(T (v, u), v, u)�0; (3.1)

(b) weakly pseudomonotone in the first argument with respect toF if for all u, v ∈ C,
supF(T (u, u), v, u)�0 implies infF(T (v, u), v, u)�0; (3.2)



L.J. Lin et al. / Nonlinear Analysis 61 (2005) 1–19 7

(c) densely pseudomonotone(respectively,weakly dense pseudomonotone) in the first
argument with respect toF if for all u ∈ C andv ∈ C0, (3.1) (respectively, (3.2))
holds.

Now we prove the existence of a solution of (SGIVIP) under dense pseudomonotonicity
assumption.

Theorem 3.1. Let C be a convex subset ofY andC0 be a segment-dense set inC. Let
T : C×C → 2X andF : X×C×C → 2R be multivalued maps with nonempty compact
values such thatF is upper semicontinuous, F(x, u, u)= {0} for all x ∈ X andu ∈ C and
for each fixed(x, u) ∈ X × C, the multivalued mapF(x, ·, u) isR+-convex. Assume that
the following conditions hold:

(i) T is densely pseudomonotone in the first argument with respect toF .
(ii) For each fixedu ∈ C0, themultivaluedmapT (u, ·) : C → 2X is upper semicontinuous

and for each fixedv ∈ C, T (·, v) : C → 2X is upper semicontinuous from the line
segments inC toX.

(iii) There exist a nonempty compact subsetK ⊆ C andũ ∈ C such that
supF(T (u, u), ũ, u)<0 for all u ∈ C\K.

Then(SGIVIP) has a solution.

Proof. We divide the proof into seven parts.
(a) We first consider the following problems:

(MGIVIP)0
{
Find ū ∈ K such that
supF(T (u, ū), u, ū)�0 for all u ∈ C0

and

(MGIVIP)′
{
Find ū ∈ K such that
supF(T (u, ū), u, ū)�0 for all u ∈ C.

Observe theonlydifferencebetween (MGIVIP)0 and (MGIVIP)′ is that thesetC0 is replaced
byC. We show that (MGIVIP)0 and (MGIVIP)′ are equivalent.
Clearly, (MGIVIP)′ implies (MGIVIP)0.
To show the reverse implication, letū ∈ K be a solution of (MGIVIP)0. Let u ∈ C be

arbitrary. SinceC0 is a segment-dense set, there existsv ∈ C0 such thatu is a cluster point
of [u, v] ∩ C0, that is, there exists a net{u�} in [u, v] ∩ C0 converging tou. On the other
hand, the upper semicontinuity and compactness ofF andT imply the upper semicontinuity
on line segment inC of the functionw �→ supF(T (w, ū), w, ū) toX. Thus,

supF(T (u, ū), u, ū)� lim
�
supF(T (u�, ū), u�, ū)�0.

This shows that̄u is a solution of (MGVIP)′.
(b) Now we show that (MGIVIP)′ is equivalent to (SGIVIP).
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Suppose that̄u ∈ C is a solution of (SGIVIP). Then by (iii) we havēu ∈ K and (i)
implies thatū is a solution of (MGIVIP)0. From part (a),̄u is a solution of (MGIVIP)′.
For the converse, let̄u ∈ K be a solution of (MGIVIP)′. For fixed arbitraryu ∈ C, let

ut := tu+ (1− t)ū ∈ C for eacht ∈ [0,1]. Then we have
supF(T (ut , ū), ut , ū)�0 for all t ∈ [0,1].

For fixed arbitraryt ∈ (0,1), we shall show that supF(T (ut , ū), u, ū)�0.
Since for every(x, u) ∈ X×C, the multivalued mapv �→ F(x, v, u) isR+-convex and

F(x, u, u)= {0}, we have
F(x, ut , ū) ⊆ tF (x, u, ū)+ (1− t)F (x, ū, ū)− R+ = tF (x, u, ū)− R+.

From this relation it follows that for everyε >0 there existv ∈ F(T (ut , ū), ut , ū),
w ∈ F(T (ut , ū), u, ū) anda�0 such that

−ε� supF(T (ut , ū), ut , ū)− ε < v = tw − a� t supF(T (ut , ū), u, ū),

and therefore,

supF(T (ut , ū), u, ū)� − 1

t
ε.

Sinceε is any positive number, we obtain that supF(T (ut , ū), u, ū)�0. Also, sincet ∈
(0,1) was arbitrarily fixed, it follows that supF(T (ut , ū), u, ū)�0 for everyt ∈ (0,1).
Let H : [0,1] → R be defined byH(t) := supF(T (ut , ū), u, ū) for everyt ∈ [0,1].

By Lemma 2.1 (b) we may conclude thatH is upper semicontinuous on[0,1] and hence
H(0)� lim t→0H(t)�0. Thus supF(T (ū, ū), u, ū)�0, that is,ū is a solution of (SGIVIP).
In view of step (b), it is sufficient to show that (MGIVIP)′ has a solution.
(c) For eachw ∈ C, define the multivalued mapsT1, T2 : C → 2C by

T1(w) := {v ∈ C : supF(T (v, v), w, v)�0}
and

T2(w) := {v ∈ C : supF(T (w, v),w, v)�0}.
It is clear that

⋂
w∈CT1(w) is the set of solutions of (SGIVIP) while

⋂
w∈CT2(w) is the set

of solutions of (MGIVIP)′.
We show thatT1 is a KKMmap onC. Suppose on the contrary thatT1 is not a KKMmap

onC. Then there existw1, w2, . . . , wn ∈ C and�1, �2, . . . , �n�0 with∑n
j=1�j = 1 such

thatw̄ := ∑n
j=1�jwj /∈ T1(wi) for eachi ∈ {1, . . . , n}. Therefore,

supF(T (w̄, w̄), wi, w̄)<0 for all i ∈ {1, . . . , n}.
Since for each fixedx ∈ T (w̄, w̄) ⊆ X, F(x, ·, w̄) isR+-convex, we have

{0} = F(x, w̄, w̄) ⊆
n∑
j=1

�jF (x,wj , w̄)− R+.
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Then there existuj ∈ F(x,wj , w̄) anda ∈ R+ such that

0=
n∑
j=1

�j uj − a�
n∑
j=1

�j supF(T (w̄, w̄), wj , w̄)<0,

which is a contradiction. Therefore,T1 is a KKM map onC.
(d) T1(ũ) ⊆ K. Indeed ifu ∈ T1(ũ)\K, then

supF(T (u, u), ũ, u)�0
which contradicts (iii).
SinceK is compact,T1(ũ) is also compact. Moreover,

co{w1, w2, . . . , wn} ⊆
n⋃
i=1
T1(wi) ⊆

n⋃
i=1
T1(wi)

for eachw1, w2, . . . , wn ∈ C. By Theorem 2.1, we obtain⋂
w∈C

T1(w) �= ∅. (3.3)

(e) Next we show that
⋂
w∈C0T1(w) ⊆ ⋂

w∈C0T2(w).
Indeed, by step (d)T1(ũ) ⊆ K and therefore⋂

w∈C0
T1(w) ⊆ K.

Let v ∈ ⋂
w∈C0T1(w), then v ∈ K ∩ T1(w) for everyw ∈ C0. Choose an arbitrary

elementu ∈ C0. We have to prove thatv ∈ T2(u). Sincev ∈ T1(u), there exists a net
{v�}�∈� ⊆ T1(u) such that{v�} converges tov and therefore

supF(T (v�, v�), u, v�)�0 for all � ∈ �.

By (i)

supF(T (u, v�), u, v�)�0 for all � ∈ �.

SinceF is upper semicontinuous with compact values,T (u, ·) is upper semicontinuous and
T (u, v′) is compact for allu, v′ ∈ C, by Lemma 2.1 (b), for each fixedu ∈ C0, the function
supF(T (u, ·), u, ·) is upper semicontinuous. Hence

supF(T (u, v), u, v)� lim
v�→v

supF(T (u, v�), u, v�)�0.

Sincev ∈ K and supF(T (u, v), u, v)�0, we obtain thatv ∈ T2(u).
(f) From the above steps, we have⋂

w∈C
T1(w) ⊆

⋂
w∈C0

T1(w) ⊆
⋂
w∈C0

T2(w)=
⋂
w∈C

T2(w). (3.4)

The relation (3.3) together with (3.4) imply that
⋂
w∈CT2(w) �= ∅, that is, (MGIVIP)′

admits a solution. �
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Definition 3.3. Let C be a subset ofY andC0 be a segment-dense set inC. Let f : X ×
C × C → R be a map. A multivalued mapT : C × C → 2X is said to be

(a) pseudomonotone in the first argument with respect tof if for all u, v ∈ C,
supf (T (u, u), v, u)�0 implies supf (T (v, u), v, u)�0; (3.5)

(b) weakly pseudomonotone in the first argument with respect tof if for all u, v ∈ C,
supf (T (u, u), v, u)�0 implies inf f (T (v, u), v, u)�0; (3.6)

(c) densely pseudomonotone(respectively,weakly dense pseudomonotone) in the first ar-
gument with respect tof if for all u ∈ C andv ∈ C0, (3.5) (respectively, (3.6)) holds.

If F is a real single-valued function, then we obtain the following result.

Corollary 3.1. LetC be a convex subset ofY andC0 be a segment-dense set inC. LetT :
C×C → 2X bemultivalued map with nonempty compact values andf : X×C×C → R

be a continuous function such thatf (x, u, u)=0 for all x ∈ X andu ∈ C and for each fixed
(x, u) ∈ X × C, the mapv �→ f (x, v, u) is convex. Assume that the following conditions
hold:

(i) T is densely pseudomonotone in the first argument with respect tof .
(ii) For eachu ∈ C0, the multivalued mapT (u, ·) : C → 2X is upper semicontinuous and

for eachv ∈ C, T (·, v) : C → 2X is upper semicontinuous from the line segments in
C to X.

(iii) There exist a nonempty compact subsetK ⊆ C andũ ∈ C such that
supF(T (u, u), ũ, u)<0 for all u ∈ C\K.

Then there exists a solution̄u ∈ C of (SIVIP). If in addition, T (ū, ū) is a convex set and
for each(u′, u) ∈ C×C, themapx �→ f (x, u′, u) is concave, then there exists̄x ∈ T (ū, ū)
such thatf (x̄, u, ū)�0 for all u ∈ C.

Proof. LetF(x, u, v)={f (x, u, v)}. Sincef is continuous,F is upper semicontinuous. By
Theorem 3.1, there exists̄u ∈ C such that

supf (T (ū, ū), u, ū)�0 for all u ∈ C
which means that

inf
u∈C sup

x∈T (ū,ū)
f (x, u, ū)�0.

Now supposing the additional assumptions, it follows fromKneser’s minimax theorem[13]
that

sup
x∈T (ū,ū)

inf
u∈C f (x, u, ū)�0.
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Sincex �→ inf u∈Cf (x, u, ū) is upper semicontinuous andT (ū, ū) is compact, there exists
an element̄x ∈ T (ū, ū) such that

inf
u∈C f (x̄, u, ū)= max

x∈T (ū,ū) infu∈C f (x, u, ū)�0.

Hencef (x̄, u, ū)�0 for all u ∈ C. �

If T is a one variable map, that is,T : C → 2X, then we derive the following result from
Corollary 3.1.

Corollary 3.2. LetC be a nonempty convex subset ofY andC0 be a segment-dense set in
C. LetT : C → 2X be an upper semicontinuous multivalued map with nonempty compact
values andf : X × C × C → R be a continuous function such thatf (x, u, u)= 0 for all
x ∈ X andu ∈ C, for each fixed(x, u) ∈ X × C, the mapv �→ f (x, v, u) is convex and
for each(u′, u) ∈ C × C, the mapx �→ f (x, u′, u) is concave. Assume that the following
conditions hold:

(i) T is densely pseudomonotone with respect tof .
(ii) There exist a nonempty compact subsetK ⊆ C andũ ∈ C such that

supF(T (u), ũ, u)<0 for all u ∈ C\K.
Then there exist̄u ∈ K and x̄ ∈ T (ū) such thatf (x̄, u, ū)�0 for all u ∈ C.

Definition 3.4. LetC be a subset of the dual spaceX∗ of X andC0 be a segment-dense set
in C. A multivalued mapT : C × C → 2X is said to be

(a) pseudomonotone in the first argumentif for all u, v ∈ C,
sup〈T (u, u), v − u〉�0 implies sup〈T (v, u), v − u〉�0; (3.7)

(b) weakly pseudomonotone in the first argumentif for all u, v ∈ C,
sup〈T (u, u), v − u〉�0 implies inf〈T (v, u), v − u〉�0; (3.8)

(c) densely pseudomonotone(respectively,weakly dense pseudomonotone) in the first
argumentif for all u ∈ C andv ∈ C0, (3.7) (respectively, (3.8)) holds.

The following result generalizes the main results of Kassay et al.[10] and Luc[17].

Corollary 3.3. LetX be a real Banach space with its dual spaceX∗. LetC ⊆ X∗ be a
convex subset ofX∗ andC0 be a segment-dense set inC. Let T : C × C → 2X be a
multivalued map with nonempty compact values such that for eachu ∈ C0, the multivalued
mapT (u, ·) : C → 2X is upper semicontinuous and for eachv ∈ C, T (·, v) : C → 2X

is upper semicontinuous from the line segments inC to X. Assume that the following
assumptions hold:

(i) T is densely pseudomonotone in the first argument.
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(ii) There exist a nonempty compact subsetK ⊆ C andũ ∈ C such that
sup〈T (u, u), ũ− u〉<0 for all u ∈ C\K.

Then there exists̄u ∈ K such thatsup〈T (ū, ū), u − ū〉�0 for all u ∈ C. If in addition
T (ū, ū) is a convex set, then there exists̄x ∈ T (ū, ū) such that〈x̄, u− ū〉�0 for all u ∈ C.

Proof. The conclusion follows from Corollary 3.1 by lettingY = X∗ andf (x, v, u) =
〈x, v − u〉 for all (x, v, u) ∈ X × C × C. �

Remark 3.1. If C0 = C, then Corollary 3.3 reduces to Theorem 3.1 of Kassay et al.[10].

The following result can be easily derived from Corollary 3.2.

Corollary 3.4 (Theorem4.3[17]). LetX∗ be the topological dual ofX.LetC bea compact
convex subset ofX andC0 be a segment-dense set inC.Letf : C → X∗ be hemicontinuous
(that is, its restrictions to line segments ofC are continuous with respect to the weak∗
topology ofX∗) and densely pseudomonotone. Then there existsū ∈ C such that

〈f (ū), u− ū〉�0 for all u ∈ C.

Now we provide an example for a mappingT verifying conditions of Corollary 3.3 on
C0 and not onC.

Example 3.2. LetX beR2 with the Euclidean inner product, and let

C := co{(0,0), (1,0), (0,−1)}.
Let C0 be the setC\{(x1,0) : 0�x1�1} (We take off the upper side of the triangle).
Clearly,C0 is segment-dense inC. DefineT : C × C → 2R2

by

T (u, v) := {V (u)}
for eachu, v ∈ C (T is a single-valued mapping not depending onv), where the operator
V : C → R2 is defined as follows:

(i) If u= (u1,0) ∈ C\C0, let
V (u)=

(
− sin

u1�
4
, cos

u1�
4

)
(rotation of the vector(0,1) with an angle equal tou1�/4).

(ii) If u = (u1, u2) ∈ C with u2<0 (that is,u ∈ C0), then we shall constructV (u) by
making use of the following property:

There exists a unique vectorw = (w1,0) ∈ C\C0 with u1<w1�1 such that the vector
u−w is orthogonal toV (w) (V (w) has been defined at step (i)). Indeed, denote byt=(t1,0)
an arbitrary vector belonging toC\C0 and let�(t) be the cosine of the angle between the
vectorsu− t andV (t) (defined also at step (i)). Then�((u1,0))<0,�((1,0))�0 and�
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is continuous and strictly increasing on the line segment joining(u1,0) and(1,0). Thus
there exists a uniquew1 with u1<w1�1 such that�((w1,0))= 0, that is, denoting byw
the vector(w1,0) we have thatu− w andV (w) are orthogonal.
Now defineV (u) := V (w)=V ((w1,0)), wherew is the unique vector attached touwith

the above procedure. In this way, clearlyV is well-defined and continuous onC. Observe
also that the triangleC has been decomposed into infinitely many line segments on which
our functionV is constant and these line segments (level lines) are disjoint (each two lines
have empty intersection). This fact allows us to show for everyu′ ∈ C0 andu ∈ C we have

〈V (u), u′ − u〉�0 ⇒ 〈V (u′), u′ − u〉�0. (3.9)

Indeed, ifu=(0,0) then there is nou′ ∈ C0 such that〈V (u), u′−u〉�0 (observeV ((0,0))=
(0,1)!), consequently relation (3.9) is automatically satisfied. Ifu �= (0,0) then consider
the level line ofV corresponding tou. It is easy to see that those vectorsu′ ∈ C0 which
satisfy〈V (u), u′ − u〉�0 are situated “above” the level line ofu (including the line itself).
Now since the level line corresponding tou′ will be above the level line ofu (they do not
intersect each-other) one can see that〈V (u′), u′ − u〉�0 holds as well. Therefore, (3.9)
holds.
Finally, letu′ = (1,0) ∈ C andu = (0,0) ∈ C. Then we have that〈V (u), u′ − u〉 = 0

while 〈V (u′), u′ − u〉<0. Hence relation (3.9) fails withC instead ofC0.

4. Existence of solutions (MGIQVIP)

In this section, we establish existence results for a solution of (MGIQVIP).

Theorem 4.1. LetC be a nonempty convex subset ofY .LetA,B : C → 2C bemultivalued
maps with nonempty values such that for eachv ∈ C,A−1(v) is open inC, coA(u) ⊆ B(u)
for all u ∈ C and the setF={u ∈ C : u ∈ B(u)} is closed inC. LetT : C×C → 2X and
F : X × C × C → 2R be lower semicontinuous multivalued maps with nonempty values
such that0 ∈ F(x, u, u) for all (x, u) ∈ X × C. Assume that the following conditions
hold:

(i) T is weakly pseudomonotone in the first argument with respect toF .
(ii) For eachu ∈ C, the set

Q(u)= {v ∈ C : supF(T (u, u), v, u)<0} is convex.
(iii) There exist a nonempty compact setK ⊆ C and a nonempty compact convex set

D ⊆ C such that for everyu ∈ C\K, there exists̃v ∈ D with ṽ ∈ A(u) such that
inf F(T (ṽ, u), ṽ, u)<0.

Then(MGIQVIP) has a solution.

Proof. Let P : C → 2C be defined by

P(u)= {v ∈ C : inf F(T (v, u), v, u)<0} for all u ∈ C.
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Define two multivalued mapsS, T ′ : C → 2C by

T ′(u)=
{
B(u) ∩Q(u) if u ∈ F,
B(u) if u ∈ C\F

and

S(u)=
{
A(u) ∩ P(u) if u ∈ F,
A(u) if u ∈ C\F.

By weak pseudomonotonicity ofT we have,P(u) ⊆ Q(u) for all u ∈ C. SinceQ(u)
is convex, we have coP(u) ⊆ Q(u) for all u ∈ C and therefore coS(u) ⊆ T ′(u). Since
0 ∈ F(x, u, u) for all (x, u) ∈ X × C, we have

supF(T (u, u), u, u)�0 for all u ∈ C.
Thereforeu /∈Q(u) and sou /∈ T ′(u) for all u ∈ C. By using lower semicontinuity ofF and
T and Lemma 2.1 (a) we have, for each fixedv ∈ C, u �→ sup[−F(T (v, u), v, u)] is lower
semicontinuous. Thus for eachv ∈ C,

u �→ inf F(T (v, u), v, u)= − sup[−F(T (v, u), v, u)] is upper semicontinuous.
Hence, for eachv ∈ C,

P−1(v)= {u ∈ C : inf F(T (v, u), v, u)<0}
is open inC. SinceF is closed inC and for eachv ∈ C, A−1(v) is open inC, it is easy to
see that

S−1(v)= (A−1(v) ∩ P−1(v)) ∪ (A−1(v) ∩ (C\F))
is open inC. By (iii), there exist a nonempty compact setK ⊆ C and a nonempty compact
convex setD ⊆ C such that for everyu ∈ C\K, there exists̃v ∈ D with ṽ ∈ A(u)

such that infF(T (ṽ, u), ṽ, u)<0. For suchu andṽ we haveu ∈ A−1(ṽ) ∩ P−1(ṽ). Thus
u ∈ S−1(ṽ). Hence all the conditions of Theorem 2.2 are satisfied, therefore there exists
ū ∈ C such thatS(ū)= ∅.
If ū ∈ C\F, thenA(ū) = S(ū) = ∅ which contradicts withA(u) �= ∅ for all u ∈ C.

Thereforeū ∈ F. Henceū ∈ B(ū) andA(ū)∩P(ū)=∅. Then, for allv ∈ A(ū), v /∈P(ū).
That is,ū ∈ B(ū) and

inf F(T (v, ū), v, ū)�0 for all v ∈ A(ū).
The proof is completed.�

Remark 4.1. If for each fixed(x, u) ∈ X × C, the multivalued mapv �→ F(x, v, u) is
R+-quasiconvex-like, then condition (ii) of Theorem 4.1 holds.

Proof. For eachu ∈ C, let v1, v2 ∈ Q(u) = {v ∈ C : supF(T (u, u), v, u)<0} and
� ∈ [0,1]. Then

supF(T (u, u), v1, u)<0 and supF(T (u, u), v2, u)<0.
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Since for all(x, u) ∈ X × C, F(x, ·, u) isR+-quasiconvex-like, either

F(x, �v1 + (1− �)v2, u) ⊆ F(x, v1, u)− R+

or

F(x, �v1 + (1− �)v2, u) ⊆ F(x, v2, u)− R+.

Let us takeF(x, �v1 + (1− �)v2, u) ⊆ F(x, v1, u)− R+, then we have

supF(T (u, u), �v1 + (1− �)v2, u)� sup[F(T (u, u), v1, u)− R+]
= supF(T (u, u), v1, u)+ sup(−R+)
= supF(T (u, u), v1, u)+ 0<0.

Asimilar argument leads to the same result in caseF(x, �v1+(1−�)v2, u) ⊆ F(x, v2, u)−
R+. Therefore�v1 + (1− �)v2 ∈ Q(u) and thusQ(u) is convex. �

WhenF is a single-valued map, we have the following result.

Theorem 4.2. LetC be a nonempty convex subset ofY .LetA,B : C → 2C bemultivalued
maps with nonempty values such that for eachv ∈ C,A−1(v) is open inC, coA(u) ⊆ B(u)
for all u ∈ C and the setF={u ∈ C : u ∈ B(u)} is closed inC. LetT : C×C → 2X be a
lower semicontinuous multivalued map with nonempty values andf : X×C×C → R be
an upper semicontinuous function such thatf (x, u, u)= 0 for all (x, u) ∈ X × C and for
each fixed(x, u) ∈ X×C, f (x, ·, u) is quasiconvex. Assume that the following conditions
hold:

(i) T is weakly pseudomonotone in the first argument with respect tof .
(ii) There exist a nonempty compact setK ⊆ C and a nonempty compact convex set

D ⊆ C such that for everyu ∈ C\K, there exists̃v ∈ D with ṽ ∈ A(u) such that
inf f (T (ṽ, u), ṽ, u)<0.
Then there exists a solution̄u ∈ C of (MIQVIP), that is, ū ∈ B(ū) and inf f (T (v, ū),

v, ū)�0 for all v ∈ A(ū).
In particular, if f is continuous andT (u, v) is compact for all(u, v) ∈ C × C, then

there exists̄u ∈ C with ū ∈ B(ū) such that for eachv ∈ A(ū) there exists̄yv ∈ T (v, ū)
satisfyingf (ȳv, v, ū)�0.

Proof. Sincef is upper semicontinuous, it follows from Berge’s theorem[5] that for each
fixedv ∈ C,

u �→ inf f (T (v, u), v, u)= − sup[−f (T (v, u), v, u)]
is upper semicontinuous. Since for each(x, u) ∈ X × C, f (x, ·, u) is quasiconvex, by
Remark 4.1, for eachu ∈ C, the set{v ∈ C : supf (T (u, u), v, u)<0} is convex. Then by
Theorem 2.2 and following the argument as in the proof of Theorem 4.1, there existsū ∈ C
such that̄u ∈ B(ū) satisfying

inf f (T (v, ū), v, ū)�0 for all v ∈ A(ū).
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If T (u, v) is compact for all(u, v) ∈ C × C andf is continuous, then for eachv ∈ A(ū),
there exists̄yv ∈ T (v, ū) such that

f (ȳv, v, ū)=min f (T (v, ū), v, ū)�0.

This completes the proof.�

The following corollary can be easily derived from Theorem 4.2.

Corollary 4.1. LetE be a reflexive Banach space with its dualE∗ andC be a nonempty
convex subset ofE. LetA,B : C → 2C be multivalued maps with nonempty values such
that for eachv ∈ C, A−1(v) is open inC, coA(u) ⊆ B(u) for all u ∈ C and the set
F= {u ∈ C : u ∈ B(u)} is closed inC. LetT : C ×C → 2E

∗
be a lower semicontinuous

multivalued map with nonempty values. Assume that the following conditions hold:

(i) T is weakly pseudomonotone in the first argument.
(ii) There exist a nonempty compact setK ⊆ C and a nonempty compact convex set

D ⊆ C such that for everyu ∈ C\K, there exists̃v ∈ D with ṽ ∈ A(u) satisfying
inf 〈T (ṽ, u), ṽ − u〉<0.
Then(MGQVIP) has a solution.

Proof. LetY=E,X=E∗, andf (x, v, u)=〈x, v−u〉 for all (x, v, u) ∈ X×C×C. Clearly,
f (x, u, u)=0 for all (x, u) ∈ X×C, andf is continuous. Since for eachu ∈ C andx ∈ X,
v �→ 〈x, v − u〉 = f (x, v, u) is affine, hence it is convex. Then for each(x, u) ∈ X × C,
f (x, ·, u) is quasiconvex. The result follows from Theorem 4.2.�

Now, we prove the existence of a solution of (MGIVIP) under weak dense pseudomono-
tonicity assumption.

Theorem 4.3. LetC a subset ofY andC0 be a convex and segment-dense set inC. Let
T : C × C → 2X andF : X × C × C → 2R be lower semicontinuous multivalued maps
with nonempty values such that0 ∈ F(x, u, u) for all (x, u) ∈ X × C0. Assume that the
following conditions hold:

(i) T is weakly dense pseudomonotone in the first argument with respect toF .
(ii) For each(x, u) ∈ X × C0, F(x, ·, u) isR+-quasiconvex-like.
(iii) There exist a nonempty compact setK ⊆ C0 and a nonempty compact convex setD ⊆

C0 such that foreveryu ∈ C0\K, thereexists̃v ∈ D satisfyinginf F(T (ṽ, u), ṽ, u)<0.
Then there exists a solution̄u ∈ C of (MGIVIP), that is, inf F(T (v, ū), v, ū)�0 for all

v ∈ C.

Proof. Let f, g : C × C → R be defined by

f (u, v)= inf F(T (v, u), v, u) and g(u, v)= supF(T (u, u), v, u)

for all u, v ∈ C. Following the argument as in Theorem 4.1, it is easy to see thatf is upper
semicontinuous in each argument.
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Now we shall show that the restrictions of the functionsf andg to the setC0×C0 satisfy
all the conditions of Theorem 2.3. Indeed, assumption (i) implies condition (iii) of Theorem
2.3. Since 0∈ F(x, u, u) for all (x, u) ∈ X × C0, we haveg(u, u)�0 for all u ∈ C0.
Furthermore, assumption (ii) and Remark 4.1 imply that for eachu ∈ C0, the set

{v ∈ C0 : supF(T (u, u), v, u)<0} is convex.
It follows from Theorem 2.3 that there existsū ∈ K such that

inf F(T (v, ū), v, ū)�0 for all v ∈ C0.
It remains to show that the above inequality holds for everyv ∈ C.
Let v ∈ C. SinceC0 is segment-dense inC, there existu0 ∈ C0 and a net{v�} in

[v, u0] ∩C0 such thatv� → v. Sincef is upper semicontinuous in the second argument, we
conclude that

f (ū, v)� lim
v�→v

f (ū, v�)= lim
v�→v

inf F(T (v�, ū), v�, ū)�0.

Therefore infF(T (v, ū), v, ū)�0 for all v ∈ C. �

Corollary 4.2. LetC be a subset ofY andC0 be a convex and segment-dense set inC. Let
T : C × C → 2X be a lower semicontinuous multivalued map with nonempty values and
f : X×C ×C → R be an upper semicontinuous function such thatf (x, u, u)= 0 for all
(x, u) ∈ X × C0. Assume that the following conditions hold:
(i) T is weakly dense pseudomonotone in the first argument with respect tof .
(ii) For each(x, u) ∈ X × C0, f (x, ·, u) is quasiconvex.
(iii) There exist a nonempty compact setK ⊆ C0 and a nonempty compact convex setD ⊆

C0 such that for everyu ∈ C0\K, thereexists̃v ∈ D satisfyinginf f (T (ṽ, u), ṽ, u)<0.
Then there exists a solution̄u ∈ C of (MIVIP), that is, inf f (T (v, ū), v, ū)�0 for all

v ∈ C.
In particular, if f is continuous andT (u, v) is compact for all(u, v) ∈ C×C, then there

existsū ∈ C such that for eachv ∈ C, there exists̄yv ∈ T (v, ū) such thatf (ȳv, v, ū)�0.

Definition 4.1. LetX∗ be the dual space ofX.LetC be a subset ofX andC0 be a segment-
dense set inC. A multivalued mapT : C → 2X

∗
is said to be

(a) weakly pseudomonotoneif for all u, v ∈ C,
sup〈T (u), v − u〉�0 implies inf〈T (v), v − u〉�0; (4.1)

(b) weakly dense pseudomonotoneif for all u ∈ C andv ∈ C0, (4.1) holds.

From Corollary 4.2 we obtain the following result which extends Theorem 5.3 of Lin
et al.[16].

Corollary 4.3. Let X be a reflexive Banach space with its dualX∗. Let C be a subset
of X and C0 be a convex and segment-dense set in C. Let T : C → 2X

∗
be weakly
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dense pseudomonotone and lower semicontinuous from the norm topology ofX to the weak
topology ofX∗.Assume that there exists a nonempty compact subsetK ofC0 and an element
ṽ ∈ C0 such thatinf 〈T (ṽ), ṽ−u〉<0 for all u ∈ C0\K.Then there exists a solution̄u ∈ C
of (MVIP), that is, inf〈T (u), u− ū〉�0 for all u ∈ C.

Remark 4.2. WhenC = C0, Corollary 4.3 reduces to Theorem 5.3 in[16].
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