Available online at www.sciencedirect.com

scmnce@mnec-r@ Nonline_ar
Analysis

ELSEVIER Nonlinear Analysis 61 (2005) 1-19 _
www.elsevier.com/locate/na

Existence results for Stampacchia and Minty type
implicit variational inequalities with multivalued
maps’

L.J. Lin®*, M.F. Yangd', Q.H. Ansar?!, G. Kassa§?

aDepartment of Mathematics, National Changhua University of Education, Changhua, Taiwan 50058,
Republic of China
bDepartment of Mathematical Sciences, King Fahd University of Petroleum and Minerals, P.O. Box 1169,
Dhahran 31261, Saudi Arabia
CDepartment of Mathematics, Eastern Mediterranean University, TRNC, Gazi Magusa, Mersin 10, Turkey

Received 4 December 2003; accepted 27 July 2004

Abstract

Stampacchia and Minty type generalized implicit variational inequality problems are considered.
We extended the notion of dense pseudomonotonicity for multivalued maps and established several
existence results for solutions of these problems in the setting of segment-dense sets. We also studied
the existence of solutions of Minty type generalized implicit quasi-variational inequality problems.
Some particular cases are also studied. It is shown that our results contain several existing results in
the literature as special cases.
© 2004 Elsevier Ltd. All rights reserved.

MSC:49J40; 49J53; 47H04

Keywords:Stampacchia (Minty) type implicit variational inequalities; Segment-denseGgtguasiconvexity;
Upper (lower) semicontinuity; Dense pseudomontonicity

* In this research, the first two author were supported by the National Science Council of the Republic of China.

* Corresponding author.
E-mail addressmaljilin@maht.ncue.edu.tgt.J. Lin).

10n leave from Department of Mathematics, Aligarh Muslim University, Aligarh, India.
20n leave from Babes-Bolyai University, Cluj, Romania.

0362-546X/$ - see front matté@ 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2004.07.038


http://www.elsevier.com/locate/na
mailto:maljilin@maht.ncue.edu.tw

2 L.J. Lin et al. / Nonlinear Analysis 61 (2005) 1-19
1. Introduction and formulations

Let X andY be real Hausdorff topological vector spaces andlep : X x ¥ — R
be a continuous bilinear form. We denote by the family of all subsets oX. Let C be
a nonempty subset &fand7 : C — 2X be a multivalued map with nonempty values.
Following the terminology of Giannesfd] (see alsd14]), we recall the following Minty
and Stampacchia variational inequality problems:

TheMinty variational inequality problenis the following:

Find # € C such that for alv € C and for ally € T'(v),

(MVIP) { Ry

Thatis,iu € C is a solution of (MVIP) if and only if

inf(T(v),v—u):= inf (y,v—u)>0 forallveC.
yeT (v)

The Stampacchia variational inequality problesn be formulated as follows:

Find iz € C such that there exists € T (i) satisfying

(SVIP) {(;,v_ﬁ)go forallv e C.

If the multivalued maf@ has compact values, then (SVIP) reduces to firdlC such that

sup(T (u),v—u):= sup (x,v—u)>0 forallvecC.
xeT @)

In the last decade these two problems were extensively studied by many researcher, see for
exampld1,2,7,10,11,14,20,12nd the references therein. It is well known that above men-
tioned problems play a vital role in nondifferentiable optimization problems, economics,
game theory, mechanics etc; see for exanipt2,11,18,20nd the references therein.

Let7 : C x C — 2¥ andF : X x C x C — 2R be multivalued maps with nonempty
values. We consider the followin§tampacchia type generalized implicit variational in-
equality problem

Find # € C such that

(SGIVIP) {SupF(T(,;’ﬁ)’u,ﬁ)QO forallu e C.

WhenF is a single-valued map, then (SGIVIP) reduces to the follovstgmpacchia
type implicit variational inequality problem:
Let f : X x C x C — R be a given function.

Find iz € C such that
(SIVIP) sup f(xX,u,ii)=0 forallueC.
XeT (it,it)
WhenY = X* (the topological dual oK) and f (x, v, u) = (x, v — u) forall x € X* and
u,v € C, (SIVIP) reduces to the followingeneralized variational inequality problem

Find iz € C such that
(GVIP) sup (X,u—u)>0 foralluecC.

FeT (i,it)
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Chen[6] established an existence result for a solution of (GVIP) for semi-monotone multi-
valued map, that is, multivalued map which is completely continuous in the first argument
and monotone in the second argument. The semi-monotone operators occur in the theory
of nonlinear elliptic operators in divergence form which are monotone only in those terms
in the principal part, that is, the highest order terms. Kassay and Kolufabamproved
the results of Chef6]. They considered the multivalued mapeing pseudomonotone (see
[19]) in the first argument and having certain kind of continuity conditions in the second
argument. Such types of multivalued maps are calksdi-pseudomonotone

We note that (GVIP) contains many known variational inequalities for multivalued maps
studied in[1,2,7,14,20,19and references therein.

From the above special cases, it is clear that our (SGIVIP) and (SIVIP) are more general
and unified one.

We also consider the followinginty type generalized implicit quasi-variational inequal-
ity problem

Find iz € C such thati € B(u) and
(MGIQVIP) {inf F(T(v,u),v,u)>0 forallve A),

whereA, B : C — 2€ are multivalued maps with nonempty values.

WhenF is a single-valued map, then (MGIQVIP) becomes the followltigty type
implicit quasi-variational inequality problem

Let f : X x C x C — R be a given function.

Find iz € C such thati € B(u) and
(MIQVIP) { inf )f(y, v,it)>0 forallve A®).

yeT (v,u

WhenY = X* (the topological dual oK) and f (y, v,u) = (y,v —u) for all y € X*
andu, v € C, (MIQVIP) reduces to the followin$ylinty type generalized quasi-variational
inequality problem

Find iz € C such thati € B(u) and
(MGQVIP) { inf (3,0 —a)>0 forallve A).
yeT (v,i)

WhenA(u) = B(u) =C for allu € C, then (MGIQVIP), (MIQVIP) and (MGQVIP) are
calledMinty type generalized implicit variational inequality probleMinty type implicit
variational inequality problenandMinty type generalized variational inequality problem
respectively.

In Section 2, we present basic definitions, notations and results which will be used in the
sequel. Recently, Lyd 7] introduced a weaker concept of pseudomonotonicity, cdiéede
pseudomonotonicitand extended the classical Hartman—Stampacchia th¢bggfor this
concept. In Section 3, we extend the notion of dense pseudomonotonicity for multivalued
maps and establish several existence results for a solution of (SGIVIP). As consequences
of our results, we derive the existence results for a solution of (GVIP) under dense pseu-
domonotonicity assumption. The results of this section contain the results ¢1Zpand
Kassay and Kolumbafi0] as special cases. In Section 4, we establish an existence result
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for a solution of (MGIQVIP) by using an equilibrium theorem of Lin et [@l6]. Finally,

we show that the classical existence result concerning Minty variational inequalities with
monotone operators is an easy consequence of our results. The results of this section also
include the results of Lin et gl16] as special cases.

2. Preliminaries

LetD be a nonempty subset of a topological vector spadene interior oD, the closure
of D and the convex hull db are denoted by inD, D and cd, respectively. Throughout
the paper, all topological spaces are assumed to be Hausdorff.

Definition 2.1. Let X andY be topological spaces. A multivalued m&p X — 2Y is said
to be

(a) upper semicontinuous for each closed seD C Y, the setT (D) = {x € X :
T (x) N D # $}is closed inX;

(b) lower semicontinuoui$ for each open seb C Y, the setr t1(D) is open inX;

(c) continuousdf it is both upper and lower semicontinuous.

The following lemmas will be used in the sequel.

Lemma 2.1 (Lin and Yu[15]). LetX andY be topological spaces. Lét: X x ¥ — 2R
ands : X — 2¥ be multivalued maps with nonempty values aneilet) = SupF (x, S(x))
andM(x) ={y € S(x) : m(x) € F(x, y)}.

(a) If both F and S are lower semicontinuoughenm is also lower semicontinuous.

(b) If both F and S are upper semicontinuous with compact valubenm is also upper
semicontinuous.

(c) If both F and S are continuous with compact valygeenm is a continuous function
and M is an upper semicontinuous and closed multivalued.map

Lemma 2.2 (Aubin and Celling4]). LetX andY be topological spaces and I&t: X —
2Y be a multivalued map

(a) If X is compact andl" is upper semicontinuous with compact valugeen 7' (X) is
compact

(b) If Y is compact and" is closedthenT is upper semicontinuous

(c) If T is upper semicontinuous with closed valubenT is closed

Definition 2.2. LetK be a nonempty subset of a topological vector spademultivalued
map7 : K — 2% is said to be &KM mapprovided c6A) € T(A)=]J,., T (x) for each
finite subsen of K.

We shall use the following Fan-KKM theorem (4&3).
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Theorem 2.1(Fan[8]). Let K be a nonempty subset of a Hausdorff topological vector
spaceE. Assume tha6 : K — 2K\ {#} be a KKM map satisfying the following conditions

(i) Foreachx € K, G(x) is closed
(ii)y For atleastonex € K, G(x) is compact
Then(,cx G(x) # 0.

Recall the following convexity concepts for multivalued maps.

Definition 2.3. Let K be a nonempty convex subset of a topological vector sgazea
topological vector space aiftla closed convex cone it A multivalued mapF : K — 27
is said to beD-convex if for every x1, x2 € X and/ € [0, 1],

FUx1+ (A= ADx2) CAF(x1) + (1= A F(x2) — D.

Definition 2.4 (AnsariandYa¢3] ). LetEandZbe topological vector spacesa nonempty
convex subset dE, andP : X — 24 a multivalued map with closed convex cone values.
The multivalued magf : X x X — 27 is calledP,-quasiconvex-liké for all x, y1, y» € X
ando € [0, 1], either

fl, oy + A=)y € fx, y1) — P(x)

or
fl, oy + (A —w)y2) € fx,y2) — P(x).

We need the following result on the existence of maximal elements which is a special
case of a result of Deguire et §r].

Theorem 2.2. Let E be a topological vector space artlbe a nonempty convex subset of
E.LetS, T : C — 2€ be multivalued maps satisfying the following conditions

(i) Foreachu € C,coS(u) C T (u).

(i) Foreachu € C,u ¢ T (u).

(i) ThesetS~(v)={u e C:ve Swu)}isopenforallv e C.

(iv) If C is not compactthen there exist a nonempty compact convex subs&tC and
a nonempty compact subsétof C such that for eaclk € C\ K, there exist® € D
such that: € S~1(9).

Then there exists am € C such thatS (i) = @.

We shall use the following theorem to prove the existence of a solution of (MGIVIP).
Theorem 2.3(Lin et al. [16]). Let X be a real Hausdorff topological vector space and
C be a nonempty convex subsetiafLet f, ¢ : C x C — R be functions satisfying the

following conditions

() Forallu € C, g(u, u)>0.
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(i) For each fixed € C, the functioru — f(u, v) is upper semicontinuous
(i) Forallu,v e C, f(u,v) <0impliesg(u, v) <O.
(iv) Foreachu € C,the setfv € C : g(u, v) <0} is convex
(v) There exist a nonempty compact &etc C and a compact convex set € C such
that for everyu € C\ K, there exist9 € D with f (u, v) <O0.
Then there exists am € K such thatf (iz, v) >0forall v € C.

3. Existence of solutions of (SGIVIP)

Throughout the paper, unless otherwise speciffeahdY are assumed to be Hausdorff
topological vector spaces.

We recall the following definition of segment-dense set which was introduced by Luc
[17].

Definition 3.1 (Luc[17]). Let K be a convex set iiX and Ko a subset oK. We say that
Ko is segment-dense in Kfor eachx € K there can be foundy € Ko such thatx is a
cluster point of the sdtr, xg] N Ko, where[x, xg] denotes the line segment joinimgnd
xo along with end points.

Itis clear that every segment-dense suldggh K is also dense but the converse statement
need not be true. LUd 7] provided an example for a dense set which is not segment-dense.
Here we give another simple example of a dense set which is not segment-dense.

Example 3.1. Let K be the two dimensional Euclidean spd&%and definek to be the
set

Ko:={(p.q) eR?: peQ, g Q)

whereQ denotes the set of all rational numbers. Then, it is clearklas dense irRR?. We
show that it is not segment-denseRA.

Letx=(s, ) € R?suchthatbotsandtareirrational numbers. Thenforevers(p, g) €
Ko, the intersection of the line segmdnt y] with Ko, [x, y] N Ko = {y}. Sox cannot be
a cluster point of the sé¢k, y] N Kg. HenceKjp is not segment-dense .

Definition 3.2. LetCbe a subset &fandCo be a segment-dense sein_et7 : C xC —
2X andF : X x C x C — 2R be multivalued maps with nonempty valu@ss said to be

(a) pseudomonotone in the first argument with respedt tbfor all u, v € C,
SUPF (T (u, u), v, u) >0 implies SURF (T (v, u), v, u) >0, (3.2)
(b) weakly pseudomonotone in the first argument with respektitdor all u, v € C,

SUpF (T (u, u), v, u) >0 implies infF (T (v, u), v,u)>0; 3.2)
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(c) densely pseudomonotoiieespectively,weakly dense pseudomonotpme the first
argument with respect té if for all ¥ € C andv € Co, (3.1) (respectively, (3.2))
holds.

Now we prove the existence of a solution of (SGIVIP) under dense pseudomonotonicity
assumption.

Theorem 3.1. Let C be a convex subset af and Cp be a segment-dense setén Let
T:CxC—2¥andF : X x C x C — 2R be multivalued maps with nonempty compact
values such thak is upper semicontinuous'(x, u, u) = {0} for all x € X andu € C and

for each fixedx, u) € X x C, the multivalued mag ' (x, -, u) is Ry-convex. Assume that
the following conditions hotd

(i) T is densely pseudomonotone in the first argument with respéct to
(i) Foreachfixed: e Co,the multivalued maf (u, -) : C — 2X is upper semicontinuous
and for each fixed € C, T(-,v) : C — 2X is upper semicontinuous from the line
segments it to X.
(iii) There exist a nonempty compact suldset C andu € C such that

SUPF (T (u,u),u,u)<0 forall u e C\K.

Then(SGIVIP has a solution

Proof. We divide the proof into seven parts.
(a) We first consider the following problems:

Find # € K such that

0
(MGIVIP) {SupF(T(u’ﬁ),u,ﬁ)QO forallu € Co

and

Find #z € K such that

/
(MGIVIP) {supF(T(u,ﬁ),uvﬁ)20 forallu € C.

Observe the only difference between (MGIVARNd (MGIVIPY is that the sef is replaced
by C. We show that (MGIVIPY and (MGIVIPY are equivalent.

Clearly, (MGIVIPY implies (MGIVIP).

To show the reverse implication, Iéte K be a solution of (MGIVIF. Letu € C be
arbitrary. SinceCg is a segment-dense set, there existsCg such thau is a cluster point
of [u, v] N Co, that is, there exists a néi,} in [u, v] N Co converging tau. On the other
hand, the upper semicontinuity and compactnegsasfdT imply the upper semicontinuity
on line segment il€ of the functionw +— sup F(T (w, i), w, i) to X. Thus,

SUPF (T (u, it), u, it) 2@ SUPF (T (ty, it), tty, it) >0.

This shows thaf is a solution of (MGVIP).
(b) Now we show that (MGIVIP)is equivalent to (SGIVIP).
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Suppose thai € C is a solution of (SGIVIP). Then by (iii) we have € K and (i)
implies thati is a solution of (MGIVIPY. From part (a)ii is a solution of (MGIVIP).

For the converse, let € K be a solution of (MGIVIP) For fixed arbitrary: € C, let
u; = tu + (1 —1t)iu € C for eachr € [0, 1]. Then we have

SUPF (T (us, ), us,u)=>0 forallz € [O, 1].

For fixed arbitrary € (0, 1), we shall show that sup(7T (u,, i), u, u) >0.
Since for every(x, u) € X x C, the multivalued map +— F(x, v, u) is R4-convex and
F(x,u,u)={0}, we have

F(x,u,,u) CtF(x,u,u)+ QL —1)F(x,u,u) — Ry =tF(x,u,u) — Ry.

From this relation it follows that for every > 0 there existv € F(T (u;, i), uy, ir),
w € F(T(u;, u), u, u) anda >0 such that

—e<SUPF(T (us,u), ur,u)y —e<v=tw —a<<tsupF(T (us,u),u,u),

and therefore,
_ _ 1
SupF(T(Ml’u)v M,M)> _;8-

Sincee is any positive number, we obtain that sbgl" (u,, i), u, u) > 0. Also, sincer €
(0, 1) was arbitrarily fixed, it follows that sup (7 (u,, i), u, u) >0 for everyr € (0, 1).
Let H : [0, 1] — R be defined byH (t) := supF (T (u,, i), u, i) for everyr € [0, 1].
By Lemma 2.1 (b) we may conclude thdtis upper semicontinuous df, 1] and hence
H(O)>lim,_oH (t) >0. Thus sugF (T (u, u), u, i) >0, that isji is a solution of (SGIVIP).
In view of step (b), it is sufficient to show that (MGIVIM)as a solution.
(c) For eachw € C, define the multivalued magg, 7> : C — 2¢ by

T1(w) := {v € C : SUpF(T (v, v), w, v) >0}
and
To(w) :={v € C : sSUpF(T (w, v), w, v) >0}.

Itis clear thaf),,.-T1(w) is the set of solutions of (SGIVIP) while), .~ T2(w) is the set
of solutions of (MGIVIPJ.

We show thaff; is a KKM map onC. Suppose on the contrary tH&tis not a KKM map
onC. Then there exist1, wo, ..., w, € C andiy, A2, ..., 4, >0 with Z?zlﬂvj =1 such
thatw := Z’;zlijwj ¢ Th(w;) for eachi € {1, ..., n}. Therefore,

Sup F(T (w, w), w;, w) <0 forallie{l,...,n}
Since for each fixed € T'(w, w) C X, F(x, -, w) is R;.-convex, we have

{0} = F(x, w, w) ZA,F(x, wj, W) — Ry
j=1
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Then there exist; € F(x, w;, w) anda € Ry such that

0=> Ajuj—a<_ AjSUpF(T (i, w), w;, w) <0,
j=1 j=1

which is a contradiction. Thereforg; is a KKM map onC.
(d) T1(z) € K. Indeed ifu € T1(u)\K, then

SUPF (T (u, u), uu,u) >0

which contradicts (iii).
SinceK is compact[1 () is also compact. Moreover,

cofwi, wa, ..., wy} C U Th(w;) € U Tr(w;)

i=1 i=1
for eachw1, wo, ..., w, € C. By Theorem 2.1, we obtain
[ Ta(w) # 0. (3.3)
weC

(e) Next we show thaff),,cc, 71(w) S [, ec,
Indeed, by step (dJ1(i1) € K and therefore

() Tuw) < K.

weCo

To(w).

Letv € ﬂweCOTl(w), thenv € K N Ty(w) for everyw € Cp. Choose an arbitrary

elementu € Co. We have to prove that € T>(u). Sincev € Ti(u), there exists a net
{vatyes S Tr(u) such thatv,} converges t@ and therefore

SUPF (T (vy, vy), 4, vy) =0 foralla e A.
By (i)
SUPF (T (1, vy), u, vy) >0 forall o e A.

SinceF is upper semicontinuous with compact valugg&y, -) is upper semicontinuous and
T (u,v') is compactforall, v’ € C, by Lemma 2.1 (b), for each fixede Cp, the function
SUpF(T (u, -), u, -) is upper semicontinuous. Hence

SUPF (T (4, v), u, v) > lim supF (T (u, vy), u, vy) =0.
Vy—> v

Sincev € K and supF (T (u, v), u, v) >0, we obtain that € T>(u).
(f) From the above steps, we have

(7w € [ Taw) € () Taw) =[] Ta(w). (3.4)
weC weCp weCo weC

The relation (3.3) together with (3.4) imply th@l,, .~ T2(w) # 9, that is, (MGIVIP)
admits a solution. [J
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Definition 3.3. Let C be a subset of andCy be a segment-dense setGnlLet f : X x
C x C — R be amap. A multivalued map : C x C — 2X is said to be

(a) pseudomonotone in the first argument with respegt ifor all u, v € C,
sup (T (u, u), v,u) >0 implies supf (T (v, u), v, u)>0; (3.5)
(b) weakly pseudomonotone in the first argument with respegtitdor all u, v € C,
sup f(T (u,u),v,u)>=0 implies inf f(T (v, u),v,u)>0; (3.6)

(c) densely pseudomonotorespectivelyweakly dense pseudomonotbirethe first ar-
gument with respect tg if for all u € C andv € Co, (3.5) (respectively, (3.6)) holds.

If Fis a real single-valued function, then we obtain the following result.

Corollary 3.1. LetC be a convex subset Bfand Cp be a segment-dense setinLetT :

C x C — 2X be multivalued map with nonempty compact valuesgndk x C x C — R

be a continuous function such thatx, u, u)=0for all x € X andu € C and for each fixed
(x,u) € X x C,the mapv — f(x, v, u) is convex. Assume that the following conditions
hold:

(i) Tis densely pseudomonotone in the first argument with respect to
(i) Foreachu e Co, the multivalued maff (u, -) : C — 2% is upper semicontinuous and
for eachv € C, T(-, v) : C — 2% is upper semicontinuous from the line segments in
CtoX
(iif) There exist a nonempty compact sublset C andu € C such that

SUp F(T (u,u),it,u) <0 forall u e C\K.

Then there exists a solutione C of (SIVIP). If in addition, 7 (u, i) is a convex set and
foreach(u’, u) € C x C,the mapr — f(x, u’, u) is concavethen there exists € T (u, i)
such thatf (x, u,u) >0forall u € C.

Proof. Let F(x, u,v)={f(x,u, v)}. Sincef is continuousk is upper semicontinuous. By
Theorem 3.1, there exisfise C such that

sup f(T(u,u),u,u)>0 forallu eC
which means that

inf  sup  f(x,u,u)=>0.
ueC xeT(i1,i)

Now supposing the additional assumptions, it follows from Kneser’s minimax thgd@&m
that

sup inf f(x,u,u)>0.

xeT (it,i) Y€C
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Sincex — inf,cc f(x, u, i) is upper semicontinuous aftlu, u) is compact, there exists

an elemenk € T (i, u) such that

inf f(,u,i)= max inf f(x,u,u)=0.
ueC x€T (u,u) ueC

Hencef(x,u,u)>0forallu e C. O

If Tis a one variable map, that ig,: C — 2%, then we derive the following result from
Corollary 3.1.

Corollary 3.2. LetC be a nonempty convex subsetodnd Co be a segment-dense set in
C.LetT : C — 2X be an upper semicontinuous multivalued map with nonempty compact
values andf : X x C x C — R be a continuous function such thAtx, u, u) = 0 for all

x € X andu € C, for each fixedx, u) € X x C, the mapv — f(x, v, u) is convex and

for each(u’, u) € C x C, the mapx — f(x, u’, u) is concave. Assume that the following
conditions hold

(i) Tis densely pseudomonotone with respegt.to
(ii) There exist a nonempty compact suliéet C andu € C such that

SUp F(T (u),u,u) <0 forall u e C\K.

Then there exisi € K andx € T (i) such thatf (x, u, u) >0forall u € C.

Definition 3.4. Let C be a subset of the dual spaké& of X andCo be a segment-dense set
in C. A multivalued magl" : C x C — 2% is said to be

(a) pseudomonotone in the first argumétrfor all u, v € C,

sup(T (u,u), v —u)=>0 implies Sup? (v, u), v —u) >0; 3.7)
(b) weakly pseudomonotone in the first arguniéfdr all u, v € C,

sup(T (u, u), v —u)=>0 implies inf(T (v, u), v —u) >0; (3.8)

(c) densely pseudomonotorfeespectively,weakly dense pseudomonotpre the first
argumentf for all u € C andv € Co, (3.7) (respectively, (3.8)) holds.

The following result generalizes the main results of Kassay ¢t@).and Luc[17].

Corollary 3.3. Let X be a real Banach space with its dual spaxé. LetC € X* be a
convex subset af* and Cg be a segment-dense setGh Let7 : C x C — 2X be a
multivalued map with nonempty compact values such that foreach’y, the multivalued
mapT (u,-) : C — 2% is upper semicontinuous and for eacte C, T(-,v) : C — 2X
is upper semicontinuous from the line segmentgito X. Assume that the following
assumptions hold

(i) T is densely pseudomonotone in the first argument
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(ii) There exist a nonempty compact suliéet C andia € C such that
sup(T (u,u), u —u) <0 forall u e C\K.
Then there existg € K such thatsup(T (iz, i), u — u) >0 for all u € C. If in addition
T (u, ) is a convex sethen there exists € T (i, u) such that(x, u —u) >0forall u € C.

Proof. The conclusion follows from Corollary 3.1 by letting = X* and f(x, v, u) =
(x,v—u)forall (x,v,u) e X xCxC. O

Remark 3.1. If Co = C, then Corollary 3.3 reduces to Theorem 3.1 of Kassay §1@].
The following result can be easily derived from Corollary 3.2.

Corollary 3.4 (Theorem4.317]). LetX™* bethe topological dual of. LetC be a compact

convex subset af andCg be a segment-dense setinLet f : C — X* be hemicontinuous
(that is its restrictions to line segments ¢f are continuous with respect to the wéak
topology ofX*) and densely pseudomonotone. Then there exist€ such that

(f@),u —u)>0 forall uecC.

Now we provide an example for a mappifg/erifying conditions of Corollary 3.3 on
Co and not orC.

Example 3.2. Let X be R? with the Euclidean inner product, and let
C = CO{(Ov O)s (17 O)s (Oa _l)}'

Let Cp be the seiC\{(x1,0) : 0<x1 <1} (We take off the upper side of the triangle).
Clearly,Cg is segment-dense 0. DefineT : C x C — oR? by

T(u,v) :={V(u)}

for eachu, v € C (T is a single-valued mapping not dependingwynwhere the operator
V : C — R?is defined as follows:

() If u=(u1,0) € C\Cp, let

. uLT ujm
V(u) = (— smT, cosT)
(rotation of the vector0, 1) with an angle equal te17/4).
(i) If u= (u1,u2) € C with up <0 (that is,u € Cp), then we shall construdt (u) by

making use of the following property:

There exists a unique vectar= (wi, 0) € C\Cop with u1 < w1 <1 such that the vector
u—w is orthogonal td/ (w) (V (w) has been defined at step (i)). Indeed, denotebgy,, 0)
an arbitrary vector belonging 16\ Cp and leto(¢) be the cosine of the angle between the
vectorsu — ¢ andV (¢) (defined also at step (i)). Them((u1, 0)) <0, ¢((1, 0)) >0 andg
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is continuous and strictly increasing on the line segment joiing0) and (1, 0). Thus
there exists a uniques with u1 < w1 <1 such thatp((ws, 0)) = 0, that is, denoting bw
the vector(wq, 0) we have that: — w andV (w) are orthogonal.
Now defineV (1) := V(w)=V ((w1, 0)), wherew is the unique vector attacheduavith
the above procedure. In this way, cleavlys well-defined and continuous &b Observe
also that the triangl€ has been decomposed into infinitely many line segments on which
our functionV is constant and these line segments (level lines) are disjoint (each two lines
have empty intersection). This fact allows us to show for euéry Cp andu € C we have

V), u' —u)>0 = (V@'),u —u)>0. (3.9)

Indeed, ifu=(0, 0) thenthereisna’ € CosuchthatV («), u’—u) >0 (observe/ ((0, 0))=
(0, 1), consequently relation (3.9) is automatically satisfied: ¥ (0, 0) then consider
the level line ofV corresponding tau. It is easy to see that those vectarse Co which
satisfy(V (u), u’ — u) >0 are situated “above” the level line ofincluding the line itself).
Now since the level line correspondingitbwill be above the level line ofi (they do not
intersect each-other) one can see tfiatu’), u’ — u) >0 holds as well. Therefore, (3.9)
holds.

Finally, letu’ = (1,0) € C andu = (0,0) € C. Then we have thatV (u), u’ —u) =0
while (V (u'), u’ — u) < 0. Hence relation (3.9) fails witl instead ofC.

4. Existence of solutions (MGIQVIP)
In this section, we establish existence results for a solution of (MGIQVIP).

Theorem 4.1. LetC be a nonempty convex subserofetA, B : C — 2¢ be multivalued
maps with nonempty values such that for eaéhC, A~1(v) is openinC, coA(u) € B(u)
forallu € CandtheseZ ={u € C : u € B(u)}isclosedinC.LetT : C x C — 2¥ and

F: X x C x C — 2R be lower semicontinuous multivalued maps with nonempty values
such thatO € F(x,u,u) for all (x,u) € X x C. Assume that the following conditions
hold:

(i) T is weakly pseudomonotone in the first argument with respekt to
(i) Foreachu € C, the set

Q) ={v e C:supF(T(u,u),v,u) <0} is convex.

(i) There exist a nonempty compact $£tC C and a nhonempty compact convex set
D C C such that for everyr € C\K, there exist® € D with v € A(u) such that
inf F(T (0, u), v, u) <O.

Then(MGIQVIP) has a solution

Proof. Let P : C — 2€ be defined by

Pu)y={veC:inf F(T(v,u),v,u)<0} forallueC.
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Define two multivalued maps, 7’ : C — 2€ by

o BN Q) ifuesF,
T'(w) = {B(u) if ueC\F
and
AN P ifueZ,
St) = {A(u) if ueC\Z.

By weak pseudomonotonicity &f we have,P(u) € Q(u) for all u € C. Since Q(u)
is convex, we have d®(u) € Q(u) for all u € C and therefore c®&u) < T'(u). Since
O0e F(x,u,u) forall (x,u) € X x C, we have

Sup F(T (u,u),u,u)>0 forallu e C.

Thereforex ¢ Q(u) and sau ¢ T'(u) for allu € C. By using lower semicontinuity & and
Tand Lemma 2.1 (a) we have, for each fixed C, u — sug—F (T (v, u), v, u)] is lower
semicontinuous. Thus for eache C,

u > inf F(T(,u),v,u)=—sud—F(T (v, u), v, u)] is upper semicontinuous
Hence, for each € C,
P rw)y={ueC:inf F(T(v,u),v,u)<0}

is open inC. Since.Z is closed inC and for eachy € C, A~1(v) is open inC, it is easy to
see that

Sty =@ty n Pty u @) ne\F))

is open inC. By (iii), there exist a nonempty compact gétC C and a nonempty compact
convex setD C C such that for everyr € C\K, there existe € D with v € A(u)
such that infF (T (3, u), 7, u) < 0. For suctu and? we havex € A~1(%) N P~1(%). Thus
u € S71(¥). Hence all the conditions of Theorem 2.2 are satisfied, therefore there exists
i € C such thatS(i) = 0.

If u € C\F, thenA(i) = S(i) = ¥ which contradicts withA(u) # ¢ forallu € C.
Thereforar € . Hencei € B(i) andA (i) N P (i) =@. Then, forallv € A(it), v ¢ P ().
Thatis,u € B(iz) and

inf F(T(v,u),v,u)>0 forallve A®).

The proof is completed. J

Remark 4.1. If for each fixed(x, u) € X x C, the multivalued map — F(x, v, u) is
R-quasiconvex-like, then condition (ii) of Theorem 4.1 holds.

Proof. For eachu € C, letvi,v2 € Q) ={v € C : supF (T (u,u),v,u) <0} and
A€ [0,1]. Then

SUpF(T (u,u),v1,u) <0 and supF (T (u,u), vz, u) <O0.
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Since for all(x, u) € X x C, F(x, -, u) is R;-quasiconvex-like, either
F(x, Av1+ (1 — D, u) C F(x,vy,u) — Ry

or
F(x, 2v1+ (L= Do, u) C F(x, v, u) — Ry.

Let us takeF (x, Avy + (1 — A)vp, u) C F(x, v1, u) — Ry, then we have

Sup F(T (u, u), vy + (1 = vz, u) < SUdF (T (u, u), vy, u) — Ry ]
sup F(T (u, u), vy, u) + sup—R4)
sup F(T (u, u), v1,u) +0<0.

A similar argument leads to the same resultin daée Avi+(1—A)va, u) C F(x, vo, u)—
R4. Thereforelvs + (1 — L)v2 € Q(u) and thusQ (u) is convex. [

WhenF is a single-valued map, we have the following result.

Theorem 4.2. LetC be a nonempty convex subserofetA, B : C — 2¢ be multivalued
maps with nonempty values such that for eaghC, A~1(v) is openinC, coA(u) € B(u)
forallu e Candthese” ={u € C :u € B(u)}isclosedinC.LetT : C xC — 2X bea
lower semicontinuous multivalued map with nonempty valuesansl x C x C — R be

an upper semicontinuous function such tifat, u, u) = Ofor all (x, u) € X x C and for
each fixedx, u) € X x C, f(x, -, u) is quasiconvex. Assume that the following conditions
hold:

(i) T is weakly pseudomonotone in the first argument with respett to
(ii) There exist a nonempty compact $&tC C and a nonempty compact convex set
D C C such that for everyr € C\K, there exist® € D with v € A(u) such that
inf f(T(0,u),v,u)<0.
Then there exists a solutiahe C of (MIQVIP), thatis u € B(i) andinf f(T (v, i),
v,u)=0forall v e A(in).
In particular, if f is continuous and’(u, v) is compact for all(u, v) € C x C, then
there exists: € C with z € B(i) such that for each € A (i) there existsy, € T (v, i)
satisfyingf (y,, v, it) >0.

Proof. Sincef is upper semicontinuous, it follows from Berge’s theorf@hthat for each
fixedv € C,

u—inf f(T(v,u),v,u) =—sud—f(T(v,u),v,u)]

is upper semicontinuous. Since for eaghu) € X x C, f(x,-, u) is quasiconvex, by
Remark 4.1, for each € C, the sefv € C : sup f(T (u, u), v, u) < 0} is convex. Then by
Theorem 2.2 and following the argument as in the proof of Theorem 4.1, thereiexists
such thai: € B(u) satisfying

inf £(T(v,i0),v,i)>0 forallve A).
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If T(u,v) is compact for allu, v) € C x C andfis continuous, then for eaahe A(u),
there exists, € T (v, i) such that

SOy, v,u)=min f(T (v, u),v,iu)>=0.

This completes the proof.[]
The following corollary can be easily derived from Theorem 4.2.

Corollary 4.1. Let E be a reflexive Banach space with its dugll and C be a nonempty
convex subset df. Let A, B : C — 2¢ be multivalued maps with nonempty values such
that for eachv € C, A=1(v) is open inC, coA(u) € B(u) for all u € C and the set
F ={ueC:uecB@)isclosedinC.LetT : C x C — 2E" be alower semicontinuous
multivalued map with nonempty values. Assume that the following conditions hold

() T is weakly pseudomonotone in the first argument
(ii) There exist a nonempty compact $&tC C and a nonempty compact convex set
D C C such that for everyr € C\K, there exist® € D with v € A(u) satisfying
inf(T(v,u), v —u) <O0.
Then(MGQVIP) has a solution.

Proof. LetY=FE,X=E*,andf (x, v, u)=(x, v—u)forall (x, v,u) € X xC xC.Clearly,
f(x,u,u)y=0forall (x,u) € X x C, andf is continuous. Since for eaghe C andx € X,
vi> (x,v—u)= f(x,v,u) is affine, hence it is convex. Then for eaoh u) € X x C,
f(x, -, u) is quasiconvex. The result follows from Theorem 4.2]

Now, we prove the existence of a solution of (MGIVIP) under weak dense pseudomono-
tonicity assumption.

Theorem 4.3. Let C a subset off and Cg be a convex and segment-dense sef.iet
T:CxC—2¥andF: X x C x C — 2R be lower semicontinuous multivalued maps
with nonempty values such thate F(x, u, u) for all (x,u) € X x Cp. Assume that the
following conditions hold

(i) T is weakly dense pseudomonotone in the first argument with respEct to
(i) Foreach(x,u) € X x Co, F(x, -, u) is Ry-quasiconvex-like
(iif) There exist a nonempty compact &ett Cp and a nonempty compact convex Bet
Cosuchthatforevery € Co\K,there exist$ € D satisfyingnf F(T (v, u), v, u) <O0.
Then there exists a solutione C of (MGIVIP), that is, inf F(T (v, i), v, u) >0 for all
veC.

Proof. Let f, g : C x C — R be defined by
f,v)=inf F(T(v,u),v,u) and g(u,v)=supF (T (u,u),v,u)

for all u, v € C. Following the argument as in Theorem 4.1, it is easy to sed thatpper
semicontinuous in each argument.
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Now we shall show that the restrictions of the functibasdg to the setCy x Cg satisfy
all the conditions of Theorem 2.3. Indeed, assumption (i) implies condition (iii) of Theorem
2.3. Since Oe F(x,u,u) for all (x,u) € X x Co, we haveg(u,u)>0 for allu € Cp.
Furthermore, assumption (ii) and Remark 4.1 imply that for eaehCo, the set

{veCo:supF(T(u,u),v,u) <0} is convex
It follows from Theorem 2.3 that there exisis= K such that
inf F(T(v,u),v,u)>0 forallve Co.

It remains to show that the above inequality holds for evegyC.

Let v € C. Since(Cp is segment-dense i€, there existug € Co and a net{v,} in
[v, uo]l N Co such thaw, — v. Sincef is upper semicontinuous in the second argument, we
conclude that

f@,v)=Tim f(@, vy) = Iim inf F(T (vy, i), vy, it) >0.
Vy—> v Vy—>V
Therefore infF (T (v, i), v, u)>0forallv e C. O

Corollary 4.2. LetC be a subset of andCg be a convex and segment-dense sét.ihet

T : C x C — 2%X be a lower semicontinuous multivalued map with nonempty values and
f: X x C x C — Rbe an upper semicontinuous function such thét, u, u) = 0 for all

(x,u) € X x Co. Assume that the following conditions hold

(i) T is weakly dense pseudomonotone in the first argument with respgct to
(iiy Foreach(x,u) € X x Co, f(x, -, u) is quasiconvex
(iii) There exist a nonempty compact &et- Co and a nonempty compact convex Bet
Cosuchthatforevery € Co\K,thereexists € D satisfyingnf f (7 (v, u), v, u) <O.
Then there exists a solutioh € C of (MIVIP), that is inf (T (v, ), v, u) >0 for all
vecC.
In particular, if f is continuous and’(u, v) is compact for allu, v) € C x C,thenthere
existsi € C such that for eaclv € C, there exists, € T (v, i) such thatf (y,, v, u) >0.

Definition 4.1. Let X* be the dual space df. LetC be a subset aX andCq be a segment-
dense set iC. A multivalued mag” : C — 2X" is said to be

(a) weakly pseudomonototifeor all u, v € C,
suplT (u), v —u)=0 implies inf(T (v), v —u)>0; (4.1)

(b) weakly dense pseudomonotafier all u € C andv € Co, (4.1) holds.

From Corollary 4.2 we obtain the following result which extends Theorem 5.3 of Lin
et al.[16].

Corollary 4.3. Let X be a reflexive Banach space with its dugtf. Let C be a subset
of X and Cp be a convex and segment-dense setin@ 7 : C — 2% be weakly
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dense pseudomonotone and lower semicontinuous from the norm topolodyy thfe weak
topology ofX*. Assume that there exists a nonempty compact sibstt’o and an element
v € Cosuch thainf (T (v), v —u) < Oforall u € Co\ K. Then there exists a solutiohe C
of (MVIP), that is inf(T (u),u — u)>0forall u € C.

Remark 4.2. WhenC = Cy, Corollary 4.3 reduces to Theorem 5.316].
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