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Abstract

In this paper, we consider the equilibrium problem with "nite number of families of players
such that each family may not have the same number of players and "nite number of families
of constrained correspondences on the strategy sets. We also consider the case with two "nite
families of constrained correspondences on the strategies sets. We demonstrate an example of
our equilibrium problem. We derive a "xed point theorem for a family of multimaps and a
coincidence theorem for two families of multimaps. By using these results, we establish the
existence of a solution of our equilibrium problems. The results of this paper generalize some
known results in the literature.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Let I be any "nite index set and for each k ∈ I , let Jk be a "nite index set. We
consider the multiobjective game in the strategy form � = (Xkj ; Akj ; Fkj)k∈I; j∈Jk with
"nite families of players such that each family may not have the same ("nite) number
of players and each player in any family have multivalued gain (or payo=) function.
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For each k ∈ I and j∈ Jk , let Xkj denote the strategy set of jth player in kth family,
Yk =

∏
j∈Jk Xkj , Y

k =
∏

l∈I; l �=k Yl, Akj :Y
k ( Xkj the constrained correspondence which

restricts the strategy of the jth player in the kth family to the subset Akj (Y
k) of Xkj

when all the players in other families have chosen their strategies xij, i∈ I , i �= k
and j∈ Ji. Let Fkj :Xkj × Y k ( R‘kj be the cost function of the jth player in the kth
family, where ‘kj is a natural number and R‘kj is a ‘kj -dimensional Euclidean space. In
this game, the cost function Fkj is a multivalued function of its strategy and strategies
of players in other families. In this problem, we are interested in "nding a strategies
combination Gy = ( Gy k)k∈I ∈

∏
k∈I Yk = Y , where Gy k = ( Gxkj)j∈Jk , with Gxkj ∈Akj ( Gy

k) and
Gzkj ∈Fkj ( Gxkj ; Gy

k) such that

zkj − Gzkj �∈ −intR
‘kj
+ ; (1.1)

for all zkj ∈Fkj (xkj ; Gy
k), xkj ∈Akj ( Gy

k) and for each k ∈ I and j∈ Jk .

If we let zkj = (u1kj ; : : : ; u
‘kj
kj ), Gzkj = ( Gu1kj ; : : : ; Gu

‘kj
kj ), then inequality (1.1) implies that

there exists 16 s6 ‘kj such that us
kj ¿ Gus

kj , that is, we can choose a collection of
objects Gzkj from Fkj ( Gxkj ; Gy

k) such that for any collection zkj chosen from Fkj (xkj ; Gy
k)

there is 16 s6 ‘kj such that us
kj ¿ Gu s

kj .
For each k ∈ I , let Jk = {k} be a singleton set and Fk be a single real valued

function. Then above problem is reduced to the Debreu social equilibrium problem
[5], which is an extension of the Nash equilibrium problem [14], see also [2]. In 1952,
Debreu established the existence of a solution of social equilibrium problem. Since
then, many generalizations and applications of these two problems have been appeared
in the literature, see [2,16–21] and references therein. We note that these problems
have only one family of players and the cost functions are single-valued. There is no
constrained correspondences on the strategy sets in the Nash equilibrium problem, while
Debreu social equilibrium problem has only one system of constrained correspondence
on the strategy sets. If for each k ∈ I , Jk is not a singleton set, our problem is di=erent
from Debreu social equilibrium problem. Recently, Lin [8] considered the constrained
two families of players competitive equilibrium problems and proved the existence of a
solution of this problem. In many problems, we always have "nite families of players
such that each family have "nite players and the cost functions are multimaps; See the
following example.
We now demonstrate an example of this kind of equilibrium problem. Let I =

{1; 2; : : : ; m} denote the index set of the companies. For each k ∈ I , let Jk={1; 2; : : : ; nk}
denote the index set of factories in the kth company, Fkj denote the cost function of
the jth factory in the kth company. We assume that the products between the factories
in the same company are di=erent, while some collections of products are the same
and some collections of products are di=erent between di=erent factories in di=erent
companies. Therefore, the strategy of jth factory in the kth company depends on the
strategies of all factories in di=erent companies. The cost function Fkj of the jth factory
in the kth company depends on its strategy and the strategies of factories in other
companies. With this strategies combination, each factory can choose a collection of
products which minimize the loss of each factory.
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In Section 2, we present some known de"nitions and results which will be used in the
sequel, while in Section 3, we derive a "xed point theorem for a family of multimaps
and a coincidence theorem for two families of multimaps, which are used in Sections 4
and 5. In Section 4, we establish existence of a solution of our equilibrium problem
with "nite number of families of players and "nite number of families of constraints on
strategy sets. We note that the Nash equilibrium theorem [14] is a special case of our
result. The results of this section also generalize a result of Lin [8] which is derived by
using a "xed point theorem of Park [15] and a coincidence theorem. The last section
deals with the equilibrium problem with "nite number of families of players and two
"nite number of families of constraints on strategy sets. In Section 4, we consider
the problem that the strategy of each family is inKuenced by the strategies of other
families, while in Section 5, we consider the problem that for each k ∈ I , the strategy
of kth family is inKuenced by the strategies of all the other families and the strategy
of kth family will inKuence all the other families. The result of this paper generalize
some known results in the literature.

2. Preliminaries

Let X and Y be nonempty sets. A multimap T :X ( Y is a function from X to the
power set of Y . Let A ⊂ X , B ⊂ Y , x∈X and y∈Y , we de"ne T (A)=

⋃{T (x): x∈A};
x∈T−1(y) if and only if y∈T (x) and T−1(B) = {x∈X : T (x) ∩ B �= ∅}.

For topological spaces X and Y and A ⊂ X , we denote by int A and GA the interior
and the closure of A in X , respectively. Let T :X ( Y , then GT :X ( Y is de"ned by
GT = T (x) for all x∈X . T is said to be (i) upper semicontinuous (u.s.c.) if for every
x∈X and every open set U in Y with T (x) ⊂ U , there exists an open neighborhood
U (x) of x such that T (x′) ⊂ U for all x′ ∈U (x); (ii) lower semicontinuous (l.s.c.) if
for every x∈X and for every open set V in Y with T (x)∩V �= ∅, there exists an open
neighborhood V (x) of x such that T (x′) ∩ V �= ∅ for all x′ ∈V (x); (iii) continuous if
it is both u.s.c. and l.s.c.; (iv) closed if its graph Gr(T ) = {(x; y): x∈X; y∈T (x)}
is closed in X × Y ; and (v) compact if there is a compact subset K ⊂ Y such that
T (X ) ⊂ K .
A topological space is said to be acyclic if all of its reduced Ĉech homology groups

vanish. A multimap T :X ( Y is said to be acyclic if it is u.s.c. with acyclic compact
values. Let V (X; Y ) be the family of acyclic multimaps T :X ( Y . Throughout this
paper, all topological spaces are assumed to be Hausdor=.

De�nition 2.1 (Luc [11]): Let Y be a topological vector space with a pointed closed
convex solid cone C, i.e., intC �= ∅, then a function � :Y → R is said to be mono-
tonically increasing (respectively, strict monotonically increasing) with respect to C
if �(a)¿ �(b) for all a− b∈C (respectively, �(a)¿�(b) for all a− b∈ intC).

De�nition 2.2 (Luc and Vargas [12]): Let K be a nonempty convex subset of a topo-
logical vector space E and let Z be a topological vector space with a convex cone C.
A multimap G :K ( Z is said to be C-quasiconvex (respectively, C-quasiconcave) if
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for any z ∈Z , the set

{x∈K : there is a y∈G(x) such that z − y∈C}
(respectively; {x∈K : there is a y∈G(x) such that z − y∈ − C})

is convex.
G is said to be C-convex if for any x1; x2 ∈K and 06 #6 1 #G(x1)+(1−#)G(x2) ⊂

G(#x1 + (1− #)x2) + C.

We now mention some lemmas which will be used in the sequel.

Lemma 2.1 (Ben-El-Mechaiekh et al. [4] and Lin and Park [9]). Let X be a compact
topological space, Y a convex space, G; T :X ( Y two multimaps such that for any
x∈X , G(x) �= ∅ and coG(x) ⊂ T (x), and X=

⋃
y∈Y intG−1(y), where coG(x) denotes

the convex hull of G(x). Then T has a continuous selection f :X → Y , that is, there
exists a continuous function f :X → Y such that f(x)∈T (x) for all x∈X .

Lemma 2.2 (Aubin and Cellina [3]). Let X and Y be two topological spaces and
T :X ( Y be a multimap.

(a) If X is compact and T is u.s.c. with nonempty compact values, then T (X ) is
compact.

(b) If Y is compact and T is closed, then T is u.s.c.
(c) If T is u.s.c. with nonempty closed values, then T is closed.

Lemma 2.3 (Lin and Yu [10]). Let X and Y be topological spaces, F :X × Y ( R,
S :X ( Y , m(x) = supF(x; S(x)) and M (x) = {y∈ S(x): m(x)∈F(x; y)}.

(a) If both F and S are l.s.c., then m is l.s.c..
(b) If both F and S are u.s.c. with nonempty compact values, then m is u.s.c..
(c) If both F and S are continuous multimaps with nonempty compact values, then

m is a continuous function and M is an u.s.c. and closed multimap.

Lemma 2.4 (Tan et al. [16]). Let X be a topological space and T :X ( R be a
continuous multimap with nonempty compact values. Then the function m :X ( R
de5ned by m(x) = max T (x) is continuous.

Lemma 2.5 (Park [15]). Let X be a nonempty compact and convex subset of a locally
convex topological vector space E and let T :X ( X be an u.s.c. with nonempty closed
acyclic values. Then T has at least one 5xed point, i.e., there exists Gx∈X such that
Gx∈T ( Gx).

Lemma 2.6 (Lee et al. [7]). Let K be a convex subset of a topological vector space
E and let D be a closed convex cone of a topological vector space Z such that
intD �= ∅. Let T :K ( Z be a multimap and for each 5xed e∈ intD and any 5xed
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a∈Z , let

p(z) = min{t ∈R: z ∈ a+ te − D}:
If T is D-quasiconvex, then pT :X ( R is R+-quasiconvex.

Lemma 2.7 (Fan [6]). Let X be a topological vector space and {Y+}+∈, be a family
of compact spaces and Y =

∏
+∈, Y+. If for each +∈,, f+ :X ( Y+ is an u.s.c.

multimap with nonempty closed values. Then the multimap f :X ( Y de5ned by
f(x) =

∏
+∈, f+(x) is u.s.c.

3. Fixed point and coincidence theorems

Let , be any index set and for each +∈,, let E+ be a topological vector space. Let
{X+}+∈, be a family of nonempty convex subsets with each X+ in E+, E =

∏
+∈, E+,

X =
∏

+∈, X+, X + =
∏

-∈,;- �=+ X- and we write X = X + × X+. For each x∈X , x+ ∈X+

denotes the +th coordinate and x+ ∈X + the projection of x onto X + and we also write
x = (x+; x+).
Very recently, Ansari et al. [1] established the following "xed point theorem for a

family of multimaps.

Theorem 3.1 (Ansari et al. [1]). For each +∈,, let  + :X + ( X+ be a multimap.
Assume that the following conditions hold:

(a) For each +∈, and for all x+ ∈X +,  +(x+) is a nonempty convex set;
(b) For each +∈,, X + =

⋃{intX +  −1
+ (x+): x+ ∈X+};

(c) There exist a nonempty compact subset K+ of X + and a nonempty compact
convex subset D+ of X+ such that for each x+ ∈X +\K+ there exists y+ ∈D+ such
that x+ ∈ intX +  −1(y+).

Then there exists Gx = ( Gx+)+∈, ∈X such that Gx+ ∈  +( Gx+) for all +∈,.

Now we establish a coincidence theorem for two families of multimaps which will
be used in Section 5 to prove the existence of a solution of equilibrium problems with
"nite families of players and two "nite number of families of constraints on strategy
sets.

Theorem 3.2. For each +∈,, let X+ be a nonempty compact convex subset of a
locally convex topological vector space E+ and let  + :X + ( X+ and /+ :X+ ( X + be
multimaps. For each +∈,, assume that the following conditions hold:

(a) For all x+ ∈X +,  +(x+) is a nonempty convex subset of X+;
(b) X + =

⋃{intX +  −1
+ (x+): x+ ∈X+};

(c) For all x+ ∈X+, /+(x+) is a nonempty convex subset of X +;
(d) X+ =

⋃{intX+ /
−1
+ (x+): x+ ∈X +}.
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Then there exist Gx = ( Gx+)+∈, ∈X and Gu = ( Gu+)+∈, ∈X such that Gx+ ∈  +( Gu +) and
Gu + ∈/+( Gx+) for all +∈,.

Proof. From conditions (a), (b) and Lemma 2.1, for each +∈,,  + :X + ( X+ has a
continuous selection f+ :X + → X+. Similarly, it follows from conditions (c), (d) and
Lemma 2.1 that for each +∈,, /+ :X+ ( X + has a continuous selection g+ :X+ → X +.
Let h :X → X be de"ned by h(x) =

∏
+∈, f+(g+(x+)) for x = (x+)+∈, ∈X . Then h is

a continuous function on X . Since X is a compact convex subset of a locally convex
topological vector space E =

∏
+∈, E+, by Tychono= "xed point theorem, there exists

Gx = ( Gx+)+∈, ∈X such that Gx = h( Gx) =
∏

+∈, f+(g+( Gx+)), that is, for each +∈,, Gx+ =
f+(g+( Gx+)). For each +∈,, let Gu +=g+( Gx+), then Gu + ∈X +. Hence Gx+=f+( Gu +)∈  +( Gu +)
and Gu + = g+( Gx+)∈/+( Gx+) for all +∈,.

Let I be any "nite index set and for each k ∈ I , let Jk be a "nite index set. For each
k ∈ I and j∈ Jk , let Xkj be a nonempty compact convex subset of a topological vector
space Ekj . We write Yk =

∏
j∈Jk Xkj , Y =

∏
k∈I Yk , Y k =

∏
l∈I; l �=k Yl and Y = Y k × Yk .

By using Theorem 3.1, we derive the following result which will be used in the
sequel.

Theorem 3.3. For each k ∈ I and j∈ Jk , let  kj :Y
k ( Xkj be a multimap. For each

k ∈ I , assume that the following conditions hold:

(a) For each j∈ Jk and for all yk ∈Y k ,  kj (y
k) is a convex set;

(b) Y k =
⋃
intY k{⋂j∈Jk  

−1
kj (xkj): (xkj)j∈Jk ∈Yk}.

Then there exists Gy = ( Gy k)k∈I ∈Y such that Gxkj ∈  kj ( Gy
k) for all k ∈ I and j∈ Jk ,

where Gy k = ( Gxkj)j∈Jk and Gy k = ( Gy l)l∈I; l �=k .

Proof. For each k ∈ I , let gk :Y k ( Yk be de"ned by gk(yk) =
∏

j∈Jk  kj (y
k). Then

gk :Y k ( Yk is a multimap with convex values.
Note that for each k ∈ I , uk = (vkj)j∈Jk ∈Yk ,

yk ∈ g−1
k (uk)⇔ uk ∈ gk(yk) =

∏
j∈Jk

 kj (y
k)

⇔ vkj ∈  kj (y
k) for all j∈ Jk

⇔ yk ∈  −1
kj (vkj) for all j∈ Jk

⇔ yk ∈
⋂
j∈Jk

 −1
kj (vkj):

Therefore, g−1
k (uk) =

⋂
j∈Jk  

−1
kj (vkj). By condition (b), for each k ∈ I ,

Y k =
⋃

{intY k g−1
k (uk): uk ∈Yk}:
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Therefore, for each yk ∈Y k , there exists uk ∈Yk such that

yk ∈ intY k g−1
k (uk) ⊆ g−1

k (uk)

and so uk ∈ gk(yk). Hence for any k ∈ I , gk(yk) is nonempty for each yk ∈Y k . Then
from Theorem 3.1, there exists Gy=( Gy k)k∈I ∈Y such that Gy k ∈ gk( Gy k)=

∏
j∈Jk  kj ( Gy

k).
Let Gy k = ( Gxkj)j∈Jk , then Gxkj ∈  kj ( Gy

k) for all k ∈ I and j∈ Jk .

4. Equilibrium problems with �nite families of players and �nite families of
constraints on strategy sets

In this section, we establish the existence of a solution of our equilibrium problem
with "nite number of families of players and "nite number of families of constraints
on strategy sets by using Theorems 3.1 and 3.3.
Let I be any index set and for each k ∈ I , let Jk be a "nite index set. For each k ∈ I

and j∈ Jk , let Xkj be a nonempty compact convex subset of a topological vector space
Ekj . We write Yk =

∏
j∈Jk Xkj , Y =

∏
k∈I Yk , Y k =

∏
l∈I; l �=k Yl and Y = Y k × Yk . For

each k ∈ I and j∈ Jk , let Wkj ∈R
‘kj
+ \{0} be a "xed vector and Wk =

∏
j∈Ik Wkj and

let Fkj :Xkj × Y k ( R‘kj be the payo= multimap and Akj :Y
k ( Xkj be the constraints.

For each k ∈ I , let Ak :Y k ( Yk be de"ned by Ak(yk) =
∏

j∈Jk Akj (y
k), where yk =

(xkj)j∈Jk ∈Yk and yk = (yl)l∈I; l �=k ∈Y k , also let SWk :Yk × Y k ( R be de"ned by

SWk (yk ; yk) =
∑
j∈Jk

Wkj · Fkj (xkj ; y
k)

=


u: u=

∑
j∈Jk

Wkj · zkj ; for zkj ∈Fkj (xkj ; y
k)


 :

For each k ∈ I , let MWk :Y k ( Yk be de"ned by

MWk (yk) = {yk ∈Ak(yk): inf SWk (yk ; yk) = inf SWk (Ak(yk); yk)}

and

M (y) =
∏
k∈I

MWk (yk):

Throughout the paper, we shall use the above-mentioned notations, unless otherwise
speci"ed.

Theorem 4.1. For each k ∈ I and j∈ Jk , let Fkj :Xkj × Y k ( R‘kj be a nonempty
multimap, Akj :Y

k ( Xkj be a multimap with nonempty convex values such that for
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all xkj ∈Xkj , A
−1
kj (xkj) is open in Y k and GAkj is an u.s.c. multimap. Assume that

(i) for each k ∈ I , SWk :Yk × Y k ( R is a continuous multimap with nonempty
compact values,

(ii) for each yk ∈Y k , the multimap uk ( SWk (uk ; yk) is R+-quasiconvex.

Then there exists Gy= ( Gy k)k∈I ∈Y , where Gy k = ( Gxkj)j∈Jk , with Gxkj ∈ GAkj ( Gy
k) and there

exists Gzkj ∈Fkj ( Gxkj ; Gy
k) such that

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gy
k), xkj ∈ GAkj ( Gy

k) and for each k ∈ I and j∈ Jk .

Proof. From the proof of Theorem 3.3, for each k ∈ I and yk ∈Yk , we have A−1
k (yk)=⋂

j∈Jk A
−1
kj (xkj), where yk = (xkj)j∈Jk . Since for each k ∈ I and j∈ Jk , A−1

kj (xkj) is open,

A−1
k (yk) is open and since for each k ∈ I , GAk( Gy k)=

∏
j∈Jk

GAkj ( Gy
k), by Lemma 2.7, GAk

is an u.s.c. multimap with nonempty convex values. For each k ∈ I and for all n∈N,
we de"ne Hk;n :Y k ( Yk by

Hk;n(yk) =
{
uk ∈Ak(yk): min SWk (uk ; yk)¡min SWk ( GAk(yk); yk) +

1
n

}
:

Since GAk is an u.s.c multimap with nonempty closed values, it follows from Lemma
2.2 (c) that GAk is closed. Since GAk is a multimap with nonempty compact values and
SWk is a continuous multimap with compact values, it follows from Lemma 2.2 (a),
SWk ( GAk(yk); yk) is a compact set. Therefore, there exist uk ∈ GAk(yk) and vk ∈ SWk (uk ; yk)
such that

vk =min SWk (uk ; yk) = min SWk ( GAk(yk); yk):

Since uk ∈ GAk(yk), there exists a net uk+ ∈Ak(yk) such that uk+ → uk . By Lemma 2.4,
the function x �→ min SWk (x; yk) is continuous. Therefore, for each n∈N

min SWk (uk+ ; y
k)−min SWk (uk ; yk)¡

1
n

for suOciently large +. This shows that

min SWk (uk+ ; y
k)¡min SWk (uk ; yk) +

1
n
=min SWk ( GAk(yk); yk) +

1
n

and uk+ ∈Hk;n(yk) for suOciently large +. Hence for all n∈N and yk ∈Y k , Hk;n(yk)
is nonempty.
Since for each yk ∈Y k , the multimap uk ( SWk (uk ; yk) is R+-quasiconvex and

Akj (y
k) is convex, Hk;n(yk) is convex.

Indeed, let uk ; u′k ∈Hk;n(yk) and #∈ [0; 1], then uk ; u′k ∈Ak(yk) and

min SWk (uk ; yk)¡min SWk ( GAk(yk); yk) +
1
n

and

min SWk (u′k ; y
k)¡min SWk ( GAk(yk); yk) +

1
n
:
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Let mk and m′
k be such that

mk =min SWk (uk ; yk)∈ SWk (uk ; yk)

and

m′
k =min SWk (u′k ; y

k)∈ SWk (u′k ; y
k);

then

mk ¡a and m′
k ¡a; where a=min SWk ( GAk(yk); yk) +

1
n
:

By the de"nition of R+-quasiconvexity of the multimap uk ( SWk (uk ; yk), there
exists b∈ SWk (#uk + (1− #)u′k ; y

k) such that

min SWk (#uk + (1− #)u′k ; y
k)6 b¡min SWk ( GAk(yk); yk) +

1
n
= a:

Since for all k ∈ I and j∈ Jk , Akj has convex values and so Ak and therefore #uk +
(1− #)u′k ∈Ak(yk). This shows that #uk + (1− #)u′k ∈Hk;n(yk) and hence Hk;n(yk) is
convex.
Furthermore, for each k ∈ I and for all n∈N,

H−1
k;n (uk) = A−1

k (uk) ∩
{
yk ∈Y k : min SWk (uk ; yk)¡min SWk ( GAk(yk); yk) +

1
n

}
:

It is easy to see from the de"nition of l.s.c. that a multimap T :M ( N is l.s.c. if
and only if T−1(V ) is open in M for any open set V of N , where M and N are
topological spaces. Since for all k ∈ I , A−1

k (yk) is open for all yk ∈Yk , A−1
k (W ) =⋃{A−1

k (yk): yk ∈W} is open in Y k for any open set W in Yk , Ak is l.s.c. Then it
is easy to see that GAk is also l.s.c. Since GAk is an u.s.c. multimap, GAk :Y k ( Yk is a
continuous multimap with compact values. By Lemmas 2.3 and 2.4, we see that for
each yk ∈Y k , uk ∈Yk , the functions

yk �→ min SWk ( GAk(yk); yk) and (uk ; yk) �→ min SWk (uk ; yk)

are continuous. Therefore, for each k ∈ I and for all n∈N, H−1
k;n (uk) is open for all

uk ∈Yk . Therefore,

Y k =
⋃

{H−1
k;n (uk): uk ∈Yk}

=
⋃

{intY k H−1
k;n (uk): uk ∈Yk}:

By Theorem 3.1, there exists n Gy = (n Gy k)k∈I ∈Y , where n Gy k = (n Gxkj)j∈Jk , with n Gxkj ∈
GAkj (n Gy

k) such that

min SWk (n Gy k ; n Gy k)¡min SWk (Ak(n Gy k); n Gy k) +
1
n
;

where n Gy k=(n Gy l)l∈I; l �=k . Let nak ∈ SWk (n Gy k ; n Gy k) be such that nak=min SWk (n Gy k ; n Gy k).
Since for each k ∈ I and j∈ Jk , Xkj is compact and SWk and GAk are u.s.c. multimaps
with compact values, it follows from Lemma 2.2 that GAk(Y k) and SWk ( GAk(Y k); Y k)
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are compact. Since for each n∈N, n Gy k ∈ GAk(Y k) and nak ∈ SWk ( GAk(Y k); Y k), there ex-
ist a subnet {n(+) Gy k} of {n Gy k}, a subsequence {n(+)ak} of {nak} and Gy k ∈ GAk(Y k),
ak ∈ SWk ( GAk(Y k); Y k) such that

n(+)( Gy k) → Gy k ; n(+)( Gy k) → Gy k ; n(+)ak → ak :

As we have seen that GAk is a continuous multimap with nonempty compact values, by
Lemma 2.3(c), we have the function

uk → min SWk ( GAk(uk); uk)

is continuous. Since n(+)ak ¡min SWk ( GAk(n(+) Gy k); n(+) Gy k) + 1
n(+) , we have

ak 6min SWk ( GAk( Gy k); Gy k) for all k ∈ I (4.1)

by letting n(+) → ∞. Since for all k ∈ I , GAk and SWk are u.s.c. with compact values,
it follows from Lemma 2.2(c) that GAk and SWk are closed and thus Gy k ∈ GAkj ( Gy

k) and
ak ∈ SWk ( GAk( Gy k); Gy k).
Inequality (4.1) shows that for each k ∈ I and j∈ Jk , there exist Gxkj ∈ GAkj ( Gy

k),
Gzkj ∈Fkj ( Gxkj ; Gy

k) such that

ak =
∑
j∈Jk

Wkj · Gzkj 6
∑
j∈Jk

Wkj · zkj for all zkj ∈Fkj (xkj ; Gy
k); xkj ∈ GAkj ( Gy

k): (4.2)

For each k ∈ I and j∈ Jk and for all xkj ∈ GAkj ( Gy
k) and zkj ∈Fkj (xkj ; Gy

k), let

xks = Gxks and zks = Gzks for s∈ Jk and s �= j

in (4.2), we obtain

Wkj · Gzkj 6Wkj · zkj ;
for all zkj ∈Fkj (xkj ; Gy

k), xkj ∈ GAkj ( Gy
k) and for each k ∈ I and j∈ Jk .

Since Wkj ∈R
‘kj
+ \{0}, Wkj · z¿ 0 for all z¿ 0. We have

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gy
k), xkj ∈ GAkj ( Gy

k) and for each k ∈ I and j∈ Jk .

Remark 4.1. If I = {1; 2}, then Theorem 4.1 is reduced to Theorem 3.7 in [8].

Theorem 4.2. For each k ∈ I and j∈ Jk , let Akj :Y
k ( Xkj be a multimap with nonempty

convex values such that for each any xkj ∈Xkj , A−1
kj (xkj) is open and GAkj is an u.s.c.

multimap. For each k ∈ I and j∈ Jk , let the cost multimap Fkj :Xkj × Y k ( R‘kj be
continuous with nonempty compact values and for any yk ∈Y k , the multimap xkj (

Fkj (xkj ; y
k) is R

‘kj
+ -quasiconvex. Then there exists Gy=( Gy k)k∈I ∈Y , where Gy k=( Gxkj)j∈Jk ,

with Gxkj ∈ GAkj ( Gy
k) and there exist Gzkj ∈Fkj ( Gxkj ; Gy

k) such that

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gy k), xkj ∈ GAkj ( Gy
k) and for each k ∈ I and j∈ Jk .
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Proof. For each k ∈ I and j∈ Jk and for all n∈N, we let a∈Rkj and ekj ∈ intR
‘kj
+ be

"xed, and we de"ne Hkj;n :Y
k ( Xkj by

Hkj;n(y
k) =

{
xkj ∈Akj (y

k): minpkjFkj (xkj ; y
k)¡minpkjFkj ( GAkj (y

k); yk) +
1
n

}
;

where the function pkj :R
‘kj → R is continuous and strict monotonically increasing

with respect to R
‘kj
+ de"ned by

pkj (z) = min{t ∈R: z ∈ a+ tekj − R
‘kj
+ }

for all z ∈R‘kj .
Following the argument as in the proof of Theorem 4.1 and using Lemma 2.6, we

can show that for each k ∈ I and j∈ Jk and for all yk ∈Y k and n∈N, Hkj;n(y
k) is a

nonempty convex set and for each xkj ∈Xkj , H
−1
kj ;n(xkj) is open in Y k .

Since for "xed k ∈ I and for all n∈N and yk ∈Y k , Hkj;n(y
k) is nonempty for all

j∈ Jk , we can let xkj ∈Hkj;n(y
k) for all j∈ Jk , then yk ∈H−1

kj ;n(xkj) for all j∈ Jk . There-

fore, yk ∈⋂
j∈Jk H−1

kj ;n(xkj) and we have

Y k =
⋃


⋂
j∈Jk

H−1
kj ;n(xkj): xkj ∈Xkj




=
⋃

intY k

⋂
j∈Jk

H−1
kj ;n(xkj): xkj ∈Xkj


 :

From Theorem 3.3, there exists n Gy = (n Gy k)k∈I ∈Y , where n Gy k = (n Gxkj)j∈Jk , with

n Gxkj ∈ GAkj (n Gy
k) such that

minpkjFkj (n Gxkj ; n Gy
k)¡minpkjFkj ( GAkj (n Gy

k); n Gy k) +
1
n
;

where n Gy k = (n Gy l)l∈I; l �=k .
Let nakj ∈Fkj (n Gxkj ; n Gy

k) be such that pkj (nakj)=minpkjFkj (n Gxkj ; n Gy
k). Since for each

k ∈ I and j∈ Jk , Xkj is compact and Fkj and GAkj are u.s.c. with compact values, it
follows from Lemma 2.2 that GAkj (Y

k) and Fkj (Xkj ; Y
k) are compact. Since for each

n∈N,

minpkjFkj(n Gxkj ; n Gy
k)¡minpkjFkj ( GAkj (n Gy

k); n Gy k) +
1
n
;

where n Gy k = (n Gy l)l∈I; l �=k .
Let nakj ∈Fkj (n Gxkj ; n Gy

k) be such that pkj (nakj) = minpkjFkj (n Gxkj ; n Gy
k). Since for

each n∈N, n Gxkj ∈ GAkj (n Gy
k) and nak ∈Fkj (Xkj ; Y

k), there exist a subsequence {n(+)akj}
of {nakj}, a subnet {n(+) Gxkj} of {n Gxkj} and Gakj ∈Fkj (Xkj ; Y

k), Gxkj ∈ GAkj (Y
k) such that

n(+) Gxkj → Gxkj and n(+)akj → Gakj .
By Lemma 2.3 and following the argument as in the proof of Theorem 4.1, we note

that the function yk �→ minpkjFkj ( GAkj ( Gy
k); Gy k) is continuous. Since

pkj (n(+)akj)¡minpkjFkj ( GAkj (n(+) Gyk); n(+) Gy k) +
1

n(+)
;
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we have

pkj ( Gakj)6minpkjFkj ( GAkj ( Gy
k); Gy k);

by letting n(+) → ∞. As in the proof of Theorem 4.1, we can show that xkj ∈ GAkj ( Gy
k)

and akj ∈Fkj (xkj ; Gy
k). This implies that for each k ∈ I and j∈ Jk ,

pkj ( Gakj)6pkj (akj);

for all akj ∈Fkj (xkj ; Gy
k) and xkj ∈ GAkj ( Gy

k).

Since pkj is strict monotonically increasing with respect to R
‘kj
+ ,

akj − Gakj �∈ −intR
‘kj
+ ;

for all akj ∈Fkj (xkj ; Gy
k), xkj ∈ GAkj ( Gy

k) and each k ∈ I and j∈ Jk .

From Theorem 4.2, we can easily derive the following result.

Corollary 4.1. For each k ∈ I and j∈ Jk , let Akj :Y
k ( Xkj be a multimap with

nonempty convex values such that for any xkj ∈Xkj , A
−1
kj (xkj) is open in Y k and GAkj is

an u.s.c. multimap. For each k ∈ I and j∈ Jk , let the cost function Fkj :Xkj ×Y k → R
be continuous and for any yk ∈Y k , the function xkj �→ Fkj (xkj ; y

k) be R+-quasiconvex.
Then there exists Gy = ( Gy k)k∈I ∈Y , where Gy k = ( Gxkj)j∈Jk , with Gxkj ∈ GAkj ( Gy

k) such that

Fkj (xkj ; Gy k)− Fkj ( Gxkj ; Gy
k)¿ 0

for all xkj ∈ GAkj ( Gy
k) and for each k ∈ I and j∈ Jk .

Remark 4.2. For each k ∈ I , let Jk = {k} be a singleton set. If for each k ∈ I , Ak :X k

( Xk is de"ned by Ak(xk)=Xk for all xk ∈X k and Fk :Xk ×X k → R is a single-valued
function, then Corollary 4.1 is reduced to the Nash equilibrium theorem [14].

Theorem 4.3. For each k ∈ I and j∈ Jk , let Fkj , Akj be the same as in Theorem 4.1

and also let Wkj ∈R
‘kj
+ \{0}. Assume that

(i) for each k ∈ I and j∈ Jk , the multimap Wkj · Fkj :Xkj × Y k ( R is continuous
with nonempty compact values,

(ii) for each yk ∈Y k , the multimap xkj ( Wkj · Fkj (xkj ; y
k) is R+-quasiconvex.

Then there exists Gy=( Gy k)k∈I , where Gy k=( Gxkj)j∈Jk , with Gxkj ∈ GAkj ( Gy
k) and there exists

Gzkj ∈Fkj ( Gxkj ; Gy
k) such that

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gy
k), xkj ∈ GAkj ( Gy

k) and for each k ∈ I and j∈ Jk .

Proof. From Theorem 4.2, there exists Gy = ( Gy k)k∈I , where Gy k = ( Gxkj)j∈Jk , with Gxkj ∈
Akj ( Gy

k) and there exists Gzkj ∈Fkj ( Gxkj ; Gy
k) such that

Wkj · zkj ¿Wkj · Gzkj ;
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for all zkj ∈Fkj (xkj ; Gy
k), xkj ∈ GAkj ( Gy

k) and for each k ∈ I and j∈ Jk . Since Wkj ∈R
‘kj
+ \

{0}, Wkj · z¿ 0 for all z¿ 0. Therefore,

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gy
k), xkj ∈ GAkj ( Gy

k) and for each k ∈ I and j∈ Jk .

Now we adopt the "xed point approach to prove the existence of a solution of
equilibrium problem with "nite number of families of players and "nite number of
families of constraints on the strategy sets.

Proposition 4.1. Let Fkj , Akj , Ak , Wkj and SWk be the same as in Theorem 4.1. For
each k ∈ I and j∈ Jk , assume that Fkj is a continuous multimap with nonempty
compact values. Then Gy = ( Gy k)k∈I ∈

∏
k∈I Yk is a 5xed point of M if and only if

Gy k ∈Ak( Gy k) and there exists Gzkj ∈Fkj ( Gxkj ; Gy
k) such that

Wkj · Gzkj 6Wkj · zkj ;
for all zkj ∈Fkj (xkj ; Gy

k), xkj ∈ GAkj ( Gy
k) and for each k ∈ I and j∈ Jk , where M is de5ned

in the beginning of this section.

Proof. Suppose that Gy is a "xed point of M . Then for each k ∈ I , Gy k ∈MWk ( Gy k).
Therefore, Gy k ∈Ak( Gy k) and min SWk ( Gy k ; Gy k)=min SWk (Ak( Gy k); Gy k). This implies that
for each k ∈ I ,

min
∑
j∈Jk

Wkj · Fkj ( Gxkj ; Gy
k)6min

∑
j∈Jk

Wkj · Fkj (xkj ; Gy
k);

for all yk = (xkj)j∈Jk ∈Ak( Gy k). Therefore, for each k ∈ I and j∈ Jk∑
j∈Jk

minWkj · Fkj ( Gxkj ; Gy
k)6

∑
j∈Jk

minWkj · Fkj (xkj ; Gy
k); for all xkj ∈Akj ( Gy

k):

(4.3)

Fix any k ∈ I j∈ Jk , let yk = (xkj)j∈Jk ∈Ak( Gy k) and xks = Gxks for s∈ Jk , s �= j in (4.3).
Then (4.3) becomes,

minWkj · Fkj ( Gxkj ; Gy
k)6minWkj · Fkj (xkj ; Gy

k);

for all xkj ∈Akj ( Gy
k) and for each k ∈ I and j∈ Jk . This implies that there exists

Gzkj ∈Fkj ( Gxkj ; Gy
k) such that

Wkj · Gzkj 6Wkj · zkj ;
for all zkj ∈Fkj (xkj ; Gy

k), xkj ∈Akj ( Gy
k) and for each k ∈ I and j∈ Jk .

Conversely, let Gy = ( Gy k)k∈I , where Gy k = ( Gxkj)j∈Jk ∈Ak( Gy k) and Gzkj ∈Fkj ( Gxkj ; Gy k) be
such that

Wkj · Gzkj 6Wkj · zkj ;
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for all zkj ∈Fkj (xkj ; Gy
k), xkj ∈Akj ( Gy

k) and for each k ∈ I and j∈ Jk . Then for each
k ∈ I , ∑

j∈Jk

minWkj · Fkj ( Gxkj ; Gy
k)6

∑
j∈Jk

minWkj · Fkj (xkj ; Gy
k);

for all yk = (xkj)j∈Jk ∈Ak( Gy k). Therefore, min SWk ( Gy k ; Gy k)=min SWk (Ak( Gy k); Gy k) and
Gy k ∈MWk ( Gy k) for each k ∈ I . Hence

Gy = ( Gy k)k∈I ∈
∏
k∈I

MWk ( Gy k) =M ( Gy):

This shows that Gy is a "xed point of M .

Remark 4.3. If I = {1; 2}, then Proposition 4.1 is reduced to Theorem 3.1 in [8].

As a consequence of Proposition 4.1, we have the following result.

Theorem 4.4. For each k ∈ I and j∈ Jk , let Xkj be a nonempty compact convex subset

of a locally convex topological vector space Ekj , Wkj ∈R
‘kj
+ \{0} and let Fkj :Xkj×Y k (

R‘kj be a multimap with nonempty values. For each k ∈ I , assume that

(i) the multimap SWk is continuous with compact values,
(ii) for each j∈ Jk , the multimap Akj :Y

k ( Xkj is continuous with nonempty closed
values,

(iii) for all yk ∈Y k , MWk (yk) is an acyclic set.

Then there exists Gy = ( Gy k)k∈I ∈Y , where Gy k = ( Gxkj)j∈Jk with Gxkj ∈Ak( Gy k) and there
exists Gzkj ∈Fkj ( Gxkj ; Gy

k) such that

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gy
k), xkj ∈Akj ( Gy

k) and for each k ∈ I and j∈ Jk .

Proof. Since for each k ∈ I and for all yk ∈Y k , Ak(yk) =
∏

j∈Jk Akj (y
k) is a closed

subset of a compact set Yk , Ak(yk) is compact. Since SWk (·; yk) is a continuous multi-
map with nonempty compact values, it follows from Lemma 2.2 that SWk (Ak(yk); yk)
is a compact set and there exists a uk ∈Ak(yk) such that

min SWk (Ak(yk); yk) = min SWk (uk ; yk);

that is, MWk (yk) is nonempty for all yk ∈Y k and for each k ∈ I . By Lemmas 2.3
and 2.4, the functions (uk ; yk) �→ min SWk (uk ; yk) and yk �→ min SWk (Ak(yk); yk) are
continuous. It is easy to see that for each k ∈ I and for all yk ∈Y k , MWk (yk) is a closed
subset of Y k and MWk :Y k ( Yk is closed. Since Y k is compact, it follows from Lemma
2.2 and condition (iii) that MWk :Y k ( Yk is an u.s.c. multimap with compact acyclic
values. By Kunneth formula [13] and Lemma 3 of Fan [5], M =

∏
k∈I MWk :Y ( Y is

an u.s.c multimap with compact acyclic values, that is, M ∈V (Y; Y ). Then it follows
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from Lemma 2.5 that M has a "xed point and the conclusion follows from Proposition

4.1 with Wkj ∈R
‘kj
+ \{0} for each k ∈ I and j∈ Jk .

Corollary 4.2. Let I be an index set and for each k ∈ I , let Xk be a nonempty compact
convex subset of a locally convex topological vector space Ek and let Ak :X k ( Xk

be a continuous multimap with nonempty closed values. For each k ∈ I , assume that
the single valued function Fk :Xk × X k → R‘k is continuous with nonempty compact
values and for any xk ∈X k , the function xk → Fk(xk ; xk) is R‘k

+ -convex. Then there
exists Gx = ( Gxk)k∈I with Gxk ∈Ak( Gxk) such that

Fk(xk ; Gxk)− Fk( Gxk ; Gxk) �∈ −intR‘k
+ ;

for each k ∈ I .

Proof. It is easy to see that all conditions of Theorem 4.4 are satis"ed and the con-
clusion of Corollary 4.2 follows immediately from Theorem 4.4.

Remark 4.4. If for each k ∈ I and j∈ Jk , Akj :Y
k ( Xkj is a continuous multimap with

nonempty closed convex values, then the condition (iii) in Theorem 4.4 is replaced by
the following condition:

(iii)′ For each k ∈ I and for each "xed yk ∈Y k , the multimap uk ( SWk (uk ; yk) is
R+-quasiconvex.

Proof. It is suOcient to show that for each k ∈ I and for all yk ∈Y k , MWk (yk) is a
convex subset of Yk . Indeed, let uk , vk ∈MWk (yk) and #∈ [0; 1], then uk ; vk ∈Ak(yk)
and there exist a∈ SWk (uk ; yk), b∈ SWk (vk ; yk) such that a = b = min SWk (Ak(yk); yk).
By condition (iii)′, for each yk ∈Y k and each +∈R, the set

H (+) = {yk ∈Yk : there is a c∈ SWk (yk ; yk) such that c6 +}
is convex. Take - =min SWk (Ak(yk); yk), we see that uk ; vk ∈H (-). Therefore, #uk +
(1−#)vk ∈H (-). This implies that there is a c∈ SWk (#uk +(1−#)vk ; yk) such that c6
- = min SWk (Ak(yk); yk). Since for each k ∈ I , Ak(yk) is convex, #uk + (1 − #)vk ∈
Ak(yk) and

min SWk (#uk + (1− #)vk ; yk) = min SWk (Ak(yk); yk):

This implies that for each k ∈ I , #uk + (1 − #)vk ∈Mwk (yk) and MWk (yk) is
convex. Hence for each k ∈ I , MWk (yk) is acyclic and the conclusion follows from
Theorem 4.4.

Remark 4.5. In Theorem 4.1, if we assume that for each k ∈ I and j∈ Jk , Xkj is a
nonempty compact convex subset of a locally convex topological vector space Ekj ,
then Theorem 4.1 is a simple consequence of Theorem 4.4 along with Remark 4.4.

Proof. Since for each k ∈ I and j∈ Jk , Akj is l.s.c., it is easy to see that GAkj :Y
k ( Xkj

is l.s.c. and since GAkj :Y
k ( Xkj is u.s.c., we have GAkj :Y

k ( Xkj is continuous. Thus
the conclusion follows from Theorem 4.4 along with Remark 4.4.
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Remark 4.6. If for each k ∈ I , Fk :Xk × X k ( R is a single-valued function, then
Corollary 4.2 is reduced to Debreu social equilibrium theorem [5].

5. Equilibrium problems with �nite families of players and two �nite families of
constraints on strategy sets

In this section, we establish existence results for a solution of the equilibrium prob-
lems with "nite number of families of players and two "nite number of families of
constraints on the strategy sets by using our coincidence Theorem 3.2 for two families
of multimaps.

Theorem 5.1. For each k ∈ I and j∈ Jk , let Xkj be a nonempty compact convex subset
of a locally convex topological vector space Ekj and Fkj :Xkj×Y k ( R‘kj be a multimap
with nonempty values. Let Akj :Y

k ( Xkj be a multimap with nonempty convex values
such that for each xkj ∈Xkj , A

−1
kj (xkj) is open in Y k and GAkj is an u.s.c. multimap. For

each k ∈ I , let Bk :Yk ( Y k be a closed multimap with nonempty convex values. For
each k ∈ I , assume that

(i) Yk =
⋃{intYk B

−1
k (yk): yk ∈Y k},

(ii) SWk :Yk × Y k ( R is continuous multimap with compact values,
(iii) for any yk ∈Y k , uk ( SWk (uk ; yk) is R+-quasiconvex.

Then there exist Gy= ( Gy k)k∈I ∈Y , Gu= ( Guk)k∈I ∈Y with Gy k ∈ GAk( Gu k) and Gu k ∈ GBk( Gy k)
and there exists Gzkj ∈Fkj ( Gxkj ; Gu

k) such that

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gu
k), xkj ∈ GAkj ( Gu

k) and for each k ∈ I and j∈ Jk .

Proof. For each k ∈ I and for all n∈N, we de"ne Hk;n :Y k ( Yk by

Hk;n(uk) =
{
yk ∈Ak(uk): min SWk (yk ; uk)¡min SWk ( GAk(uk); uk) +

1
n

}
:

As in the proof of Theorem 4.1, for all yk ∈Y k , Hk;n(yk) is a nonempty convex set
and

Y k =
⋃

{intY k H−1
k;n (uk): uk ∈Yk}:

Since Yk =
⋃{intYk B

−1
k (yk): yk ∈Y k}, it follows from Theorem 3.2 that there exist

n Gy = (n Gy k)k∈I ∈Y =
∏

j∈I Yj and n Gu= (n Guk)k∈I ∈Y such that

n Gy k ∈Hk;n(n Gu k) and n Gu k ∈Bk(n Guk):

Therefore, n Gy k ∈Ak(n Gu k) and

min SWk (n Gy k ; n Gu k)¡min SWk ( GAk(n Gu k); n Gu k) +
1
n
:
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Let nak ∈ SWk (n Gy k ; n Gu k) be such that nak =min SWk (n Gy k ; n Gu k). As in the proof of Theo-
rem 4.1, GAk(Y k) and SWk ( GAk(Y k); Y k) are compact and thus there exist a subnet {n(+) Gy k}
of {n Gy k}, a subsequence {n(+)ak} of {nak} and yk ∈ GAk(Y k), a∈ SWk ( GAk(Y k); Y k) such
that

n(+)( Gy k) → Gy k and n(+)ak → ak :

Since for each k ∈ I , Bk :Yk ( Y k is closed and Y k is compact, it follows from Lemma
2.2 that Bk :Yk ( Y k is an u.s.c. multimap with compact values and Bk(Yk) is compact.
Therefore, there exist a subnet {n(+) Gu k} of {n Gu k} and Gu k ∈Bk(Yk) such that

n(+) Gu k → Gu k :

As in the proof of Theorem 4.1, for each k ∈ I , GAk :Y k ( Yk is a continuous multi-
map with compact values. By Lemma 2.3, the function uk �→ min SWk ( GAk(uk); uk) is
continuous for each k ∈ I . Since n(+)ak ¡min SWk ( GAk(n(+) Gu k); n(+) Gu k) + 1=n(+), letting
n(+) → ∞, we have

ak 6min SWk ( GAk(uk); uk); for each k ∈ I:

As in the proof of Theorem 4.1, we see that for each k ∈ I , ak ∈ SWk ( GAk( Gu k); Gu k),
Gy k = ( Gxkj)j∈Jk ∈ GAk( Gu k) and Gu k ∈Bk( Gy k). Therefore, for each k ∈ I and j∈ Jk , there
exist Gxkj ∈ GAkj ( Gu

k), Gzkj ∈Fkj ( Gxkj ; Gu
k) such that

ak =
∑
j∈Jk

Wkj · Gzkj 6
∑
j∈Jk

Wkj · zkj ; (5.1)

for all zkj ∈Fkj (xkj ; Gu
k), xkj ∈ GAkj ( Gu

k). For each "xed k ∈ I and "xed j∈ Jk , let yk =
(xhs)s∈Jk ∈ GAk( Gu k) and zk = (zks)s∈Jk ∈

∏
s∈Jk Fks(xkks; Gu

k) with xks = Gxks and zks = Gzks for
s∈ Jk , s �= j, in (5.1), we have

Wkj · Gzkj 6Wkj · zkj ;
for all zkj ∈Fkj (xkj ; Gu

k), xkj ∈ GAkj ( Gu
k) and for each k ∈ I and j∈ Jk . Therefore,

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gu
k), xkj ∈ GAkj ( Gu

k) and for each k ∈ I and j∈ Jk .

Theorem 5.2. Under the assumption of Theorem 4.2, we further assume that for
each k ∈ I , Bk :Yk ( Y k is a closed multimap with nonempty convex values and
Yk =

⋃{intYk B
−1
k (yk): yk ∈Y k}. Then there exist Gy = ( Gy k)k∈I ∈Y , Gu = ( Guk)k∈I ∈Y

with Gy k ∈ GAk( Gu k) and Gu k ∈Bk( Gy k) and there exists Gzkj ∈Fkj ( Gxkj ; Gu
k) such that

zkj − Gzkj �∈ −intR
‘kj
+ ;

for all zkj ∈Fkj (xkj ; Gu
k), xkj ∈ GAkj ( Gu

k) and for each k ∈ I and j∈ Jk , where Gy k=( Gxkj)j∈Jk .

Proof. For each k ∈ I and j∈ Jk , let Hkj;n :Y
k ( Xkj and pkj :Zkj → R be de"ned as

in the proof of Theorem 4.2 and let

Gk;n(yk) =
∏
j∈Jk

Hkj;n(y
k):
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As in the proof of Theorem 4.2, we can show that Y k =
⋃{intG−1

k;n (yk): yk ∈Yk}.
Since Yk =

⋃{int B−1
k (yk): yk ∈Y k}, it follows from Theorem 3.2 that there exist

n Gy=(n Gy k)k∈I ∈Y and n Gu=(n Guk)k∈I ∈Y such that n Gy k ∈Gk;n(n Gu k) and n Guk ∈Bk(n Gy k).
Therefore, for each k ∈ I ,

n Gy k = (n Gxkj)j∈Jk ∈Ak(n Gu k)

and

minpkj · Fkj (n Gxkj ; n Gu
k)¡minpkj · Fkj (( GAkj (n Gu

k); n Gu k); n Gu k) +
1
n
:

where n Gy k = (n Gy j)j∈I; j �=k . Following the arguments of Theorems 4.2 and 5.1, we get
the conclusion.
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