Nonlinear
Analysis

PERGAMON Nonlinear Analysis 54 (2003) 525-543 _
www.elsevier.com/locate/na

On the constrained equilibrium problems with
finite families of players™

Lai-Jiu Lin®*, Shih Feng Cheng?, Xu Yao Liu?, Q.H. Ansari®

2 Department of Mathematics, National Changhua University of Education,
Changhua, Taiwan 50058, People’s Republic of China
bDepartment of Mathematics, Aligarh Muslim University, Aligarh 202 002, India

Received 30 January 2002; accepted 22 November 2002

Abstract

In this paper, we consider the equilibrium problem with finite number of families of players
such that each family may not have the same number of players and finite number of families
of constrained correspondences on the strategy sets. We also consider the case with two finite
families of constrained correspondences on the strategies sets. We demonstrate an example of
our equilibrium problem. We derive a fixed point theorem for a family of multimaps and a
coincidence theorem for two families of multimaps. By using these results, we establish the
existence of a solution of our equilibrium problems. The results of this paper generalize some
known results in the literature.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Let / be any finite index set and for each k€1, let J; be a finite index set. We
consider the multiobjective game in the strategy form A = (Xi;» Ak;> Fi ierjes, With
finite families of players such that each family may not have the same (finite) number
of players and each player in any family have multivalued gain (or payoff) function.
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For each k €/ and j €J;, let X}, denote the strategy set of jth player in kth family,
Ve =T11e, Xi YE=T],e L Yo Ay Y* — X, the constrained correspondence which
restricts the strategy of the jth player in the kth family to the subset 4, (Y kY of X,
when all the players in other families have chosen their strategies x;;, i€/, i # k
and jeJ;. Let Fy,:X;, x Y k — R’ be the cost function of the jth player in the kth

family, where 7, is a natural number and R'% isa/ k,~dimensional Euclidean space. In
this game, the cost function F}; is a multivalued function of its strategy and strategies
of players in other families. In this problem, we are interested in finding a strategies
combination y = (yj )resr € erl Yi =Y, where y; = ()Ekj )je» With Xy, EAkj(j/ ¥y and
2k, € Fi (X, y kY such that

Cr;
Z, — 2, & —int R, (1.1)

for all Z, EFk/.(xkj,)'/k), X, EAkj(_)_/k) and for each k €/ and j € J;.

7N _ 7 . . . .
If we let z;, = (u}{l_,...,ukf/ ) Zk, = (ulkl_,...,u,;/ ), then inequality (1.1) implies that
there exists 1 <s </, such that ui/_ > L?}{j, that is, we can choose a collection of

objects Zk; from Fk/.()Ek,,, )7" ) such that for any collection z;, chosen from Fk/.(xkj, )7" )
there is 1 <s </j, such that uj > it

For each k€1, let J, = {k} be a singleton set and F; be a single real valued
function. Then above problem is reduced to the Debreu social equilibrium problem
[5], which is an extension of the Nash equilibrium problem [14], see also [2]. In 1952,
Debreu established the existence of a solution of social equilibrium problem. Since
then, many generalizations and applications of these two problems have been appeared
in the literature, see [2,16-21] and references therein. We note that these problems
have only one family of players and the cost functions are single-valued. There is no
constrained correspondences on the strategy sets in the Nash equilibrium problem, while
Debreu social equilibrium problem has only one system of constrained correspondence
on the strategy sets. If for each k €1, J; is not a singleton set, our problem is different
from Debreu social equilibrium problem. Recently, Lin [8] considered the constrained
two families of players competitive equilibrium problems and proved the existence of a
solution of this problem. In many problems, we always have finite families of players
such that each family have finite players and the cost functions are multimaps; See the
following example.

We now demonstrate an example of this kind of equilibrium problem. Let / =
{1,2,...,m} denote the index set of the companies. For each k €1, let Jy={1,2,...,n;}
denote the index set of factories in the kth company, F}, denote the cost function of
the jth factory in the kth company. We assume that the products between the factories
in the same company are different, while some collections of products are the same
and some collections of products are different between different factories in different
companies. Therefore, the strategy of jth factory in the kth company depends on the
strategies of all factories in different companies. The cost function Fy, of the jth factory
in the kth company depends on its strategy and the strategies of factories in other
companies. With this strategies combination, each factory can choose a collection of
products which minimize the loss of each factory.
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In Section 2, we present some known definitions and results which will be used in the
sequel, while in Section 3, we derive a fixed point theorem for a family of multimaps
and a coincidence theorem for two families of multimaps, which are used in Sections 4
and 5. In Section 4, we establish existence of a solution of our equilibrium problem
with finite number of families of players and finite number of families of constraints on
strategy sets. We note that the Nash equilibrium theorem [14] is a special case of our
result. The results of this section also generalize a result of Lin [8] which is derived by
using a fixed point theorem of Park [15] and a coincidence theorem. The last section
deals with the equilibrium problem with finite number of families of players and two
finite number of families of constraints on strategy sets. In Section 4, we consider
the problem that the strategy of each family is influenced by the strategies of other
families, while in Section 5, we consider the problem that for each k €/, the strategy
of kth family is influenced by the strategies of all the other families and the strategy
of kth family will influence all the other families. The result of this paper generalize
some known results in the literature.

2. Preliminaries

Let X and Y be nonempty sets. A multimap 7:X — Y is a function from X to the
power set of Y. Let A C X, BC Y, x€X and y €Y, we define T(4)={J{T(x): x€A4};
x€T~Y(y) if and only if y€ T(x) and T-'(B)={xe€X: T(x)NB # 0}.

For topological spaces X and ¥ and 4 C X, we denote by intA4 and A4 the interior
and the closure of 4 in X, respectively. Let 7:X — Y, then T:X —o Y is defined by
T =T(x) for all x€X. T is said to be (i) upper semicontinuous (u.s.c.) if for every
x €X and every open set U in Y with T(x) C U, there exists an open neighborhood
U(x) of x such that T(x") C U for all x’ € U(x); (ii) lower semicontinuous (1.s.c.) if
for every x € X and for every open set V in Y with T(x)NV # (), there exists an open
neighborhood V(x) of x such that T(x") NV # @ for all x' € V(x); (iii) continuous if
it is both u.s.c. and Ls.c.; (iv) closed if its graph G(T)={(x,y): x€X, yeT(x)}
is closed in X x Y; and (v) compact if there is a compact subset K C Y such that
T(X)CK.

A topological space is said to be acyclic if all of its reduced Cech homology groups
vanish. A multimap 7 :X — Y is said to be acyclic if it is u.s.c. with acyclic compact
values. Let V(X,Y) be the family of acyclic multimaps 7 :X — Y. Throughout this
paper, all topological spaces are assumed to be Hausdorff.

Definition 2.1 (Luc [11]). Let ¥ be a topological vector space with a pointed closed
convex solid cone C, i.e., intC # (), then a function £:Y — R is said to be mono-
tonically increasing (respectively, strict monotonically increasing) with respect to C
if &(a) = &(b) for all a — b e C (respectively, E(a) > E(b) for all a — beint C).

Definition 2.2 (Luc and Vargas [12]). Let K be a nonempty convex subset of a topo-
logical vector space £ and let Z be a topological vector space with a convex cone C.
A multimap G:K — Z is said to be C-quasiconvex (respectively, C-quasiconcave) if
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for any z € Z, the set

{x€K: there is a y € G(x) such that z — y € C}

(respectively, {x€K: there is a y € G(x) such that z — y € — C})

is convex.
G is said to be C-convex if for any x;,x, € K and 0 < 4 < 1 AG(x1)+(1—-2)G(x2) C
G(Axp+ (1 —A)xp)+ C.

We now mention some lemmas which will be used in the sequel.

Lemma 2.1 (Ben-El-Mechaiekh et al. [4] and Lin and Park [9]). Let X be a compact
topological space, Y a convex space, G,T :X — Y two multimaps such that for any
x€X, G(x) # 0 and co G(x) C T(x), andX:Uyey int G=1(y), where co G(x) denotes
the convex hull of G(x). Then T has a continuous selection f:X — Y, that is, there
exists a continuous function f:X — Y such that f(x)€ T(x) for all x€ X.

Lemma 2.2 (Aubin and Cellina [3]). Let X and Y be two topological spaces and
T:X — Y be a multimap.

(a) If X is compact and T is u.s.c. with nonempty compact values, then T(X) is
compact.

(b) If Y is compact and T is closed, then T is u.s.c.

(¢) If T is u.s.c. with nonempty closed values, then T is closed.

Lemma 2.3 (Lin and Yu [10]). Let X and Y be topological spaces, F:X x Y — R,
S:X =Y, m(x)=supF(x,S(x)) and M(x) ={yeSkx): m(x)€F(x,y)}.

(a) If both F and S are Ls.c., then m is Ls.c..

(b) If both F and S are u.s.c. with nonempty compact values, then m is u.s.c..

(c) If both F and S are continuous multimaps with nonempty compact values, then
m is a continuous function and M is an u.s.c. and closed multimap.

Lemma 2.4 (Tan et al. [16]). Let X be a topological space and T:X — R be a
continuous multimap with nonempty compact values. Then the function m: X — R
defined by m(x) =max T'(x) is continuous.

Lemma 2.5 (Park [15]). Let X be a nonempty compact and convex subset of a locally
convex topological vector space E and let T : X — X be an u.s.c. with nonempty closed
acyclic values. Then T has at least one fixed point, i.e., there exists x € X such that
e T(X).

Lemma 2.6 (Lee et al. [7]). Let K be a convex subset of a topological vector space
E and let D be a closed convex cone of a topological vector space Z such that
intD # (). Let T:K — Z be a multimap and for each fixed e € intD and any fixed
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acZ, let
p(z)=min{t €eR: z€a + te — D}.

If T is D-quasiconvex, then pT:X — R is R -quasiconvex.

Lemma 2.7 (Fan [6]). Let X be a topological vector space and {Y,}yc s be a family
of compact spaces and Y =[] ., Y,. If for each ac A, f,:X — Y, is an u.s.c.
multimap with nonempty closed values. Then the multimap f:X — Y defined by

f)=Tl,eq falx) is us.c.

3. Fixed point and coincidence theorems

Let A be any index set and for each o € A, let E, be a topological vector space. Let
{X.}sea be a family of nonempty convex subsets with each X, in E,, £ =[], Es,
X =[l,eq X0, X* = HﬁeA’ﬁ#a X and we write X =X* x X,. For each x € X, x, € X,
denotes the oth coordinate and x* € X* the projection of x onto X* and we also write
x = (x%xy).

Very recently, Ansari et al. [1] established the following fixed point theorem for a
family of multimaps.

Theorem 3.1 (Ansari et al. [1]). For each o€ A, let Y, : X* — X, be a multimap.
Assume that the following conditions hold.:

(a) For each o€ A and for all x* € X*, y,(x*) is a nonempty convex set,

(b) For each o€ A, X* = J{inty« Y, '(xy): x, € Xy };

(c) There exist a nonempty compact subset K* of X* and a nonempty compact
convex subset D, of X, such that for each x* € X*\K?* there exists y, € D, such
that x* € inty Y~ (y,).

Then there exists X = (Xy)uca €X such that X, € Y, (X*) for all o € A.

Now we establish a coincidence theorem for two families of multimaps which will
be used in Section 5 to prove the existence of a solution of equilibrium problems with
finite families of players and two finite number of families of constraints on strategy
sets.

Theorem 3.2. For each o€ A, let X, be a nonempty compact convex subset of a
locally convex topological vector space E, and let r,: X* — X, and ¢y : X, — X* be
multimaps. For each o« € A, assume that the following conditions hold:

(a) For all x* € X*, Y,(x*) is a nonempty convex subset of Xy;
(b) X*=J{inty« ¥ '(xy): x4 € Xy}
(c) For all x, € X,, ¢py(x,) is a nonempty convex subset of X%
(d) X, = U{inty, ¢, '(x*): x* € X*}.
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Then there exist X = (Xy)ycn €X and it = (ly)yes €X such that X, €Y, (a*) and
™€ ¢y(xy) for all we A.

Proof. From conditions (a), (b) and Lemma 2.1, for each a € A, ¥, : X* — X, has a
continuous selection f,:X* — X,. Similarly, it follows from conditions (c), (d) and
Lemma 2.1 that for each o € A, ¢, : X, — X* has a continuous selection g, : X, — X*.
Let #:X — X be defined by A(x) =]],c, fx(gu(xs)) for x = (x,)sea €X. Then £ is
a continuous function on X. Since X is a compact convex subset of a locally convex
topological vector space E =], ., E,, by Tychonoff fixed point theorem, there exists
¥ = (¥3)xea €X such that ¥ = A(X) = [[,c 4 f2(9x(¥2)), that is, for each a € 4, %, =
f4(ga(xy)). For each o € A, let 1 *=g,(X,), then 7 * € X*. Hence x,= f,(@*) €Y (%)
and i@ * = g,(X,) € P,(x,) for all e A. O

Let / be any finite index set and for each k €1, let J; be a finite index set. For each
kel and j€Jy, let X;, be a nonempty compact convex subset of a topological vector
space Ey,. We write Y; :H./'EJ/; X, Y =1lies Yio Y*¥ :H,EI’,# Y, and Y =Y* x ¥;.

By using Theorem 3.1, we derive the following result which will be used in the
sequel.

Theorem 3.3. For each k€1 and j€Jy, let Yy, : Y — Xy, be a multimap. For each
k €1, assume that the following conditions hold:

(a) For each jeJi and for all y* € Y, Y (¥*) is a convex set;
(b) Y* =Uinty{e,, lﬂkfl(xk,)i (xk;)jes; € Yi}.

Then there exists y = (yi)ker €Y such that X, Etpk](jzk) for all kel and j€Jy,
where 3y = (Xx,)jes and 3% = (5 )icrix-

Proof. For each k€1, let gy : Y* — ¥, be defined by gi(»*) =[1,c;, ¥4 (*). Then

g : Y¥ — ¥} is a multimap with convex values.
Note that for each k €1, uy = (v,)jes, € Y,

Y egy ) e € g3 =[] v (V5
JEJK

& v €W (VF)  for all jeJ;

@yke%“(vkj) for all j€J;

e e vy wy).

JEJk
Therefore, g,:l(uk) = ijJk 1//,;1(1);(,). By condition (b), for each k€1,

Yk = U{intyk gk_l(uk): up € Y }.
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Therefore, for each y* € Y*, there exists u; € Y; such that

YE € intys gk_l(uk) c gk_](uk)

and so u; € gx(»*). Hence for any k €1, gi(»*) is nonempty for each y* € Y*. Then
from Theorem 3.1, there exists y=(J4 )res € Y such that y; € gk()'/k):HiEJk lﬁk]()-/k).

Let i = (X, )jes, then Xy, El,bk/.()'/k) forall kel and jeJ;,. O

4. Equilibrium problems with finite families of players and finite families of
constraints on strategy sets

In this section, we establish the existence of a solution of our equilibrium problem
with finite number of families of players and finite number of families of constraints
on strategy sets by using Theorems 3.1 and 3.3.

Let I be any index set and for each k €1, let J; be a finite index set. For each k €1
and j € J;, let X;, be a nonempty compact convex subset of a topological vector space
Ey,. We write Y =[T,c, Xi» ¥ =1Tlie; Yoo Y* =T1)cppu Yo and Y = Y* x Y. For

l,
each k€l and je€J, let Wy, € R.7\{0} be a fixed vector and W, = I1es, Wi, and
let Fy, : Xz, ¥ Y*¥ — R’% be the payoff multimap and Ay Y k— Xj, be the constraints.
For each k€1, let A, :Y* — ¥; be defined by A4;(y") = [Les A, (YF), where yp =
(Xk,)jejk €Y, and yk = (V1ieri#k € Y*, also let S : ¥, x Y¥ — R be defined by

S (. ) = ZWk_, < Fr (xg, )
JEJk

=quu= Zij - zp,, for z, EFk/(xk/,yk)
JEJk
For each k€1, let M+ :Y* — Y, be defined by
M"Yy = {yk € 4k (YY): inf ST (yx, ) = inf S (4, (V). )}

and

M) =] M" (5.

kel

Throughout the paper, we shall use the above-mentioned notations, unless otherwise
specified.

Theorem 4.1. For each kel and jeJy, let Fy, :X;, X Yt — R be a nonempty
multimap, Ay, : Yk — Xy, be a multimap with nonempty convex values such that for
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all x;; € Xy, Ak_/_'(xkj) is open in Y* and A_k/. is an w.s.c. multimap. Assume that

(i) for each keI, S :Y, x Y*¥ — R is a continuous multimap with nonempty
compact values,
(ii) for each y* € Y*, the multimap w, — S"*(wy, y*) is R -quasiconvex.

Then there exists y = (Vi )ker €Y, where yi = (Xi,)jey,, with Xy, eA_k/(j/") and there
exists Zy, € Fy, (Xx,, 7 ) such that
- . lk;
Zk, — Zk, € —I1nt R_:’,

Sor all z, eFk/.(xk/,)'/k), Xy, EA_k/.()'/k) and for each k€l and j € Jy.

Proof. From the proof of Theorem 3.3, for each k € and y; € Y}, we have A;l( Vi)=
ﬂjeJk Ak_jl(xkj), where y; = (xy,)jey,- Since for each k €1 and j € J, A,;](xk/) is open,
Ak_l(yk) is open and since for each k €1, A,(7%)= H«/’EJ/; A_k,,()'/k), by Lemma 2.7, 4
is an u.s.c. multimap with nonempty convex values. For each k£ €7 and for all ne N,
we define Hy,: Y*¥ — ¥; by

. . ; 1
Hin(y*) = {uk €4x(1): min §™ (g, 1) < min $™H(A(y), ¥ + n} :

Since A; is an u.s.c multimap with nonempty closed values, it follows from Lemma
2.2 (c) that Ay is closed. Since A4 is a multimap with nonempty compact values and
S is a continuous multimap with compact values, it follows from Lemma 2.2 (a),
S"e(Ar(y%), ¥¥) is a compact set. Therefore, there exist u; € A;(y*) and vy € S7 (uy, y*)
such that

v = min "¢ (g, y*) = min S" (4 (1), yF).

Since wuy eA_k(y"), there exists a net uy, eAk(y") such that u;, — u;. By Lemma 2.4,
the function x — min S”*(x, y¥) is continuous. Therefore, for each n € N

1
min "% (uy, , y*) — min S 1y, y*) < -
n
for sufficiently large a. This shows that
. . 1 . - 1
min S"* (uy,, y*) < min 8" (g, ) + = = min S (A (1), V) + -
n n

and uy, € Hy ,(y*) for sufficiently large o. Hence for all n€ N and y* € Y%, H, ,(»F)
is nonempty.
Since for each y* € Y*, the multimap u; — S"(w,y*) is R,-quasiconvex and
Ak, (Y*) is convex, Hi,(»*) is convex.
Indeed, let uy,u) € Hy,(y*) and A €[0,1], then wu,u} € Ax(y*) and
min S"* (g, ) < min S" (A (Y5), *) + %

and

_ 1
min " (), y*) < min " (Ae(¥F), ) + .
n
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Let my and mj, be such that

my = min 8" (uy, y*) € S (uy, y*)
and

m), = min S"*(u},, y*) € S (uj, y*),
then

. - 1
mp < a and mf <a, where a=minS" (4, ("), ") + -.
n

By the definition of R, -quasiconvexity of the multimap u; — S"*(w, y*), there
exists b€ S"(Juy + (1 — L)uj, y*) such that

- 1
min "¢ (Quy, + (1 — D), v*) < b < min S"e (4, (1), ) + S=a

Since for all k€l and j€J;, 4y, has convex values and so A; and therefore Juy +
(1 — A)uj € Ag(¥*). This shows that Auy + (1 — A)uj, € Hy,(»*) and hence Hy ,(»*) is
convex.

Furthermore, for each k€1 and for all n€ N,

. . - 1
kanl(uk) :A;l(uk) N {yk e Y*: min 8" (uy, y*) < min "¢ (A, (H5), Y*) + n} .

It is easy to see from the definition of l.s.c. that a multimap 7:M — N is ls.c. if
and only if 77!(V) is open in M for any open set V of N, where M and N are
topological spaces. Since for all k €/, Ak_](yk) is open for all y, €Yy, Ak_l(W) =
U4, ") yx €W} is open in Y* for any open set W in Y, 4 is Ls.c. Then it
is easy to see that 4 is also ls.c. Since 4 is an u.s.c. multimap, 4;:Y* — Y} is a
continuous multimap with compact values. By Lemmas 2.3 and 2.4, we see that for
each y* € Y*, uy € Yy, the functions

y* o min ST (Ae(3*), %) and  (ug, »*) > min S (i, ¥¥)

are continuous. Therefore, for each k €/ and for all ne N, Hk’_n'(uk) is open for all
uy € Y. Therefore,

YE = J{H, (w): e € Vi)

= U{intyk Hk,_nl(uk)l Uy € Yk}.
By Theorem 3.1, there exists ,3 = (4 V¢ )ker €Y, wWhere , Vi, = (uXk,)jecs, With Xy, €
Ak, (,7%) such that
. - - . _ - 1
min 8" (, 74, 7*) < min 8" (A7), 7 ") + -

where , 7 ¥ =7 ieriz- Let wax € S5 (431, 7 *) be such that ,a; =min S7(, 55, , 7 ).
Since for each k€l and j€J;, X}, is compact and S"e and A4y are u.s.c. multimaps
with compact values, it follows from Lemma 2.2 that A(Y*) and S"(4,(Y*),Y*)
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are compact. Since for each n €N, , 7, € A (Y*) and ,a; € S (4 (YF), YF), there ex-
ist a subnet {wwyPx} of {,Px}, a subsequence {,ar}t of {uar} and j; € Ax(YF),
a; € S" (A4 (Y*),Y*) such that

W (FE) = Tk aw(FD) =75 wwar — a.
As we have seen that 4 is a continuous multimap with nonempty compact values, by
Lemma 2.3(c), we have the function

uF — min S" (A, (), u*)

L
n(a)?

ar < min S" (A (5%), 7%)  for all kel (4.1)

is continuous. Since ,yax < min N (/Ik(,,(a))_/ ky, ()Y kY + we have

by letting n(x) — oo. Since for all k€1, A* and S"* are u.s.c. with compact values,
it follows from Lemma 2.2(c) that A% and S"* are closed and thus 7 € A, ( 7%) and

ar € S (Ai(5%), 75). ;
Inequality (4.1) shows that for each k€l and j€J, there exist Xy, € Ay (¥ Ky,
Zy € ij(fkj, ¥y k) such that

ar=Y Wy 2, <Y Wi -z, forall z, € Fy(xi. 55). xi €4 (55). (42)
JE€Jk JEJk

For each k€1 and j €J; and for all x;; E/l_k/.()'/k) and z, Eij(xk/.,)'/k), let
Xis = Xis and zg, =2z, for s€J;, and s # j
in (4.2), we obtain
Wi, -2k, < Wi, - 2k,
for all zy, € Fy,(x,, 7 ), xi, €Ay, (7 %) and for each k €1 and j € Jj.
Since Wy, € Rik‘" \{0}, W}, -z >0 for all z> 0. We have
2y, — Zi, ¢ —int [Rﬁk’,
for all z, eij(xk/,j/k), Xk, EA_k/.(_)_/k) and for each k €/ and jeJ;,. [
Remark 4.1. If 7 = {1,2}, then Theorem 4.1 is reduced to Theorem 3.7 in [8].

Theorem 4.2. For each k €1 and j € Ji, let Ay, Yk —o Xy, be a multimap with nonempty
convex values such that for each any xi, € Xy, A,;l(xk/.) is open and A_k/. is an u.s.c.

multimap. For each k €1 and j€Jy, let the cost multimap Fy, : X, X Y* — R be
continuous with nonempty compact values and for any y* € Y*, the multimap Xy, —°

4,
F, (k. YY) is R J:f -quasiconvex. Then there exists y=(yi)ker € Y, where Jy=(X,)jeu;»
with Xy, GA}/(J'/ ¥y and there exist Zk; € Fi (X, y kY such that

- . Ck
Zy, — Z; ¢ —int R,

Jor all zy, € Fy,(xk;» Vi), X, fokj(jzk) and for each k€l and j € Jy.
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‘i,
Proof. For each k €/ and j€J; and for all n€ N, we let a € RY and ey, €int Rf’ be
fixed, and we define Hy,,: Y* — X, by

. . - 1
Hk/,n(yk) = {xki EAk/(yk): min pk/Fk/(xkﬂ yk) < min pkij/(Ak/(yk)’ yk) + }’l} >

where the function py, : R’% — R is continuous and strict monotonically increasing
) lr;
with respect to R’ defined by
. l,
pi(z)=min{tcR: z€a + te, — Rl’}

for all ze R’
Following the argument as in the proof of Theorem 4.1 and using Lemma 2.6, we
can show that for each k €/ and j €J; and for all y* € Y* and n€ N, H,(»*) is a

nonempty convex set and for each x;, € Xy, Hk;;(xkj) is open in Y*.
Since for fixed k€7 and for all n€N and y* € Y*, Hk,-,n(yk) is nonempty for all
J €Jk, we can let xy, erj,,,(yk) for all j €J, then y* er;;(xkj) for all j € J;. There-

k
fore, y* €(;e,,

Hk;,i(xk,) and we have
Yk = U ﬂ Hk;;(xk,,): X, € X,
J€Jk

= U intyx ﬂHk;:l(xkj): Xy, € X,
JEJk
From Theorem 3.3, there exists ,3 = (,3s)kes €Y, wWhere ,3; = (ui4 )jes, With
11)Ek, eAk/-(n)_/ k) such that

) - ) - - 1
min py, Fi, (3,07 *) < min p Fi (A, (07 ), 07 ) + -

where , 3% = (.7 1)ier 14
Let qax, € Fi,(uXk;5ny ) be such that Pr;(na, ) =min py Fi, (nXk;» 0y kY. Since for each

kel and j€Ji, X, is compact and Fj, and A_kj are u.s.c. with compact values, it

follows from Lemma 2.2 that Ay, (Y*) and F, (X;,,Y*) are compact. Since for each
neN,

) .- . - _ 1
min pyiFi (. 17 ©) < min pi, Fi (A, (055,07 5) + -

where , 3% = (.7 1)ier 14

Let yay, € Fiy (sTion 7 k) be such that py(sar,) = min pyFy,(uXs, x5 *). Since for
each n€ N, %, € A, (,*) and ,a; € Fy (X, Y*), there exist a subsequence {,(ax, }
of {uay}, a subnet {,%} of {,%} and d, € Fy,(Xi, Y*), 5, €4y, (Y*) such that
(k= Xk, and yar, — dg;.

By Lemma 2.3 and following the argument as in the proof of Theorem 4.1, we note
that the function y* — min py, Fy, (A, (7 %), 7¥) is continuous. Since

. - - _ 1
Pk o) < min py By, (A Guay V) ey 7°) + w2’
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we have
Pi(dx,) < min pg Fy (A (75, 7 5),

by letting n(a) — oo. As in the proof of Theorem 4.1, we can show that x, EA_kl.()'/ )
and ay; EFk/(xk/,)'/k). This implies that for each k €/ and j € J;,

Pi(ax) < pr;(ar,),
for all ay, € Fy,(xg;, y ¥y and Xk, GA_k/.()_/ .
Since py, is strict monotonically increasing with respect to [Rik’ ,
ay, — Gy, ¢ —int [Rik/,
for all a, EFk].(xk/.,)'/k), Xy, G/fkj()'zk) and each ke€/ and jeJ;,. O

From Theorem 4.2, we can easily derive the following result.

Corollary 4.1. For each k€l and j€Jy, let Ay, : Yk — Xy, be a multimap with

nonempty convex values such that for any xi, € Xy, Ak_jl(xk/.) is open in Y* and A_kj is

an u.s.c. multimap. For each k €1 and j € Jy, let the cost function Fy, : X;, X YF S R

be continuous and for any y* € Y*, the function Xy, — Fiy (X ) be R -quasiconvex.

Then there exists y = (Vi )rer €Y, where V= (Xx,)jes,, With X, eA_k/()'/k) such that
Fi (0, ) = Fiy (%, 7) 2 0

Sor all x, fok/.()'/k) and for each k€l and j € Jy.

Remark 4.2. For each k€1, let J, = {k} be a singleton set. If for each k €1, 4y Xk

—o X; is defined by 4;(x*)=X; for all x¥ € X* and F; : X; x X* — R is a single-valued

function, then Corollary 4.1 is reduced to the Nash equilibrium theorem [14].

Theorem 4.3. For each k€1 and j€Jy, let Fy,, Ay, be the same as in Theorem 4.1
‘.

and also let Wy, € R\ {0}. Assume that

(i) for each k€l and j€Jy, the multimap Wy, - Fy, : X, X Y¥ — R is continuous
with nonempty compact values,
(ii) for each y* € Y*, the multimap xi, — Wy, - Fy (xi,, y*) is R-quasiconvex.

Then there exists y=(y i )ker, where y i =(Xy;)jes,» with Xy, eA_k/.(j/ kY and there exists
Zk; € Fi (X, y kY such that
.,
Zk, — Z_k,- Q —int R_ﬁ’,
for all zi, € Fi(xi,, 7). xi, €A (7%) and for each k €1 and j € Jy.
Proof. From Theorem 4.2, there exists y = (y«)kes, Where yi = (X, )jeu,, With Xy, €
Ay ( 7%) and there exists Zk; € Fi (X 7 %) such that

Wi, - 21, 2 Wy, - 2y,
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- i,
for all z, eij(xkj,)'/k), Xk EAk/(jk) and for each k €/ and j € J;. Since W}, € Rf’\
{0}, Wy, -z > 0 for all z > 0. Therefore,

l;
zi, — 2k, & —int R,
for all z, € Fy, (x;, 7 ©), xi, €Ay, (7 %) and for each k€1 and j€J,. O
Now we adopt the fixed point approach to prove the existence of a solution of

equilibrium problem with finite number of families of players and finite number of
families of constraints on the strategy sets.

Proposition 4.1. Let Fy,, Ay, Ar, Wi, and S7e be the same as in Theorem 4.1. For
each kel and j€Jy, assume that Fy, is a continuous multimap with nonempty
compact values. Then j = (¥i)ker € [Ipe; Y is a fixed point of M if and only if
i €EA(F*) and there exists Zi, € Fi (3, 7 *) such that

Wi, -2, < Wi, - 2k
Jor all zy, € F,(xx;, ¥ ky, Xk, eA_kj()'/ ¥y and for each k € I and j € Ji, where M is defined

in the beginning of this section.

Proof. Suppose that 7 is a fixed point of M. Then for each k€I, 7, € M7 (55).
Therefore, 71 € Ax(7*) and min (7, 7 %) =min "+ (4, (7 %), 7). This implies that
for each k€1,

min Y~ Wy, - F, (%, 35) <min Yy W - Fi (xi, 55),
JEJK JEJk

for all yr = (xi,)je, GAk()'/k). Therefore, for each k€7 and j € J;

Zmin Wi, - Fi, (i, 7 ) < Zmin Wi, - Fr,(xi, 75), for all xy, € 4, (5 %).
JEJk JEJk
(4.3)

Fix any k €1 je€Ji, let y = (xi,)jes, €Ar(7*) and xi, =Xy, for s€Jy, s # j in (4.3).
Then (4.3) becomes,

min W, - Fy, (. 7 *) < min Wy, - Fy, (i, 7 %),

for all xy, € Ay (¥ k) and for each k€l and j€J;. This implies that there exists
zy, € F, ()Zk]., ¥y kY such that

Wi, -2, < Wy, - 2k,
for all z, € Fy, (x4, 7 %), x4, €4y, (7*) and for each k €1 and j € Jj.

Conversely, let y = (Vi )ker, where yy = (Xx,)je, EAk()'/k) and zy, € Fy, (X, Vi) be
such that

Wk]. < Zr < ij ©Zkos

J '
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for all z, € Fy,(xs,, 7 %), xi, €4i,(7*) and for each k€l and j€J;. Then for each
kel,

> min Wy, - Fi (£, 75) < min Wy, - Fi (xi,, 75,
JEJk JEJk
for all yi = (xx,)jes, € Ax(3%). Therefore, min S"(5, %) =min S"x(4x(7%), 7¥) and
Fx €M™ (5%) for each k €. Hence
§=G e € [ [ M"(G*) =M ().
kel

This shows that y is a fixed point of M. [J
Remark 4.3. If 7 = {1,2}, then Proposition 4.1 is reduced to Theorem 3.1 in [8].
As a consequence of Proposition 4.1, we have the following result.

Theorem 4.4. For each k €1 and j € Ji, let Xy, be a nonempty compact convex subset

l,
of a locally convex topological vector space Ey,, Wy, € Rﬁ’\{O} and let Fy; : X, x Yk —
R% be a multimap with nonempty values. For each k €1, assume that

(i) the multimap S"* is continuous with compact values,
.o , . . . k . , . .
(ii) for each j € Ji, the multimap Ay, :Y" — X, is continuous with nonempty closed
values,
(iii) for all y* € Y*, M"x(y*) is an acyclic set.

Then there exists y = (Vi )ker €Y, where yi = (Xi,)jes, With Xy, € Ar(y kY and there
exists zy; € Fy,(Xy,, ¥ kY such that
Lt
Zg, — Z_k/ ¢ —int le,

Jor all z, GFkl.(xk/,)'/k), Xk, eAk/.()'/k) and for each k€l and j € Jy.

Proof. Since for each k €/ and for all y* € Y¥, 4,()F) = [es
subset of a compact set Y, 4;(»*) is compact. Since S”(-, y¥) is a continuous multi-
map with nonempty compact values, it follows from Lemma 2.2 that S7(4,(y"), y*)

is a compact set and there exists a u; € A¢(»*) such that

minSWk(Ak(yk), yk) = min SWk(uk,yk),

Akj(yk) is a closed

that is, M"*(y*) is nonempty for all y¥ € Y* and for each k€/. By Lemmas 2.3
and 2.4, the functions (u, y*) +— min S"*(uy, y*) and y* +— min S"+(4;(y%), y*) are
continuous. It is easy to see that for each k € I and for all y* € Y*, M"k(%) is a closed
subset of Y*¥ and M"+ : Y* — Y, is closed. Since Y* is compact, it follows from Lemma
2.2 and condition (iii) that M "+ : Y* — ¥} is an u.s.c. multimap with compact acyclic
values. By Kunneth formula [13] and Lemma 3 of Fan [5], M =]],, MV Y - Y is
an u.s.c multimap with compact acyclic values, that is, M € V'(Y,Y). Then it follows
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from Lemma 2.5 that M has a fixed point and the conclusion follows from Proposition
4.1 with W, € [Rik’\{O} for each k€l and jeJ;,. O

Corollary 4.2. Let I be an index set and for each k € I, let X be a nonempty compact
convex subset of a locally convex topological vector space Ey and let Ay : X* — X,
be a continuous multimap with nonempty closed values. For each k € 1, assume that
the single valued function Fj: X, x X* — R’ is continuous with nonempty compact
values and for any x* € X*, the function x; — Fy(x;,x*) is Rff-convex. Then there
exists ¥ = (X )res with Xy € Ay(Z*) such that

Fi(xk, %) — Fi(F, #) € —int R,
for each ke1l.

Proof. It is easy to see that all conditions of Theorem 4.4 are satisfied and the con-
clusion of Corollary 4.2 follows immediately from Theorem 4.4. [

Remark 4.4. If for each k€1 and j €Jy, Ay, : ¥ k— Xj; is a continuous multimap with
nonempty closed convex values, then the condition (iii) in Theorem 4.4 is replaced by
the following condition:

(iii) For each k€1l and for each fixed y* € Y*, the multimap w; — S"(uy, V%) is
R, -quasiconvex.

Proof. It is sufficient to show that for each k €7 and for all y* € Y*, M"c(y%) is a
convex subset of Y. Indeed, let u;, vy € M"4(y*) and 4 €[0,1], then u, v, € Ax(Y*)
and there exist a € S"k(uy, y*), b€ S"(vg, y*) such that a = b = min " (4,(y5), y%).
By condition (iii)', for each y* € Y* and each o € R, the set

H(a)={y €Y there is a c € S"(y;, y*) such that ¢ < o}
is convex. Take f = min S"+(4;(y%), y¥), we see that u;, v, € H(fB). Therefore, Auy +
(1—=2)vx € H(B). This implies that there is a ¢ € S"*(luy + (1 — A)vy, ¥¥) such that ¢ <
B = min S"(4;(1*), y*). Since for each k€1, A;(y*) is convex, Ju; + (1 — A)v; €
Ax(y*) and

min 8" (Gag + (1 = v, y*) = min S (A (), ¥1).

This implies that for each kel, Juz + (1 — Aoy € M (y*) and M7 (yF) is
convex. Hence for each k€I, M"¢(y*) is acyclic and the conclusion follows from
Theorem 4.4. [

Remark 4.5. In Theorem 4.1, if we assume that for each k€7 and j€J;, X, is a
nonempty compact convex subset of a locally convex topological vector space Ej,
then Theorem 4.1 is a simple consequence of Theorem 4.4 along with Remark 4.4.

Proof. Since for each k €/ and j € J;, 4y, is Ls.c., it is easy to see that /fk/. (YK —o X,

is l.s.c. and since A_kj 1Yk — Xy, is u.s.c., we have A_k/. 1Yk — Xy, is continuous. Thus
the conclusion follows from Theorem 4.4 along with Remark 4.4. O
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Remark 4.6. If for each k€I, F;: X, x X¥ — R is a single-valued function, then
Corollary 4.2 is reduced to Debreu social equilibrium theorem [5].

5. Equilibrium problems with finite families of players and two finite families of
constraints on strategy sets

In this section, we establish existence results for a solution of the equilibrium prob-
lems with finite number of families of players and two finite number of families of
constraints on the strategy sets by using our coincidence Theorem 3.2 for two families
of multimaps.

Theorem 5.1. For each k €1 and j € Ji, let X;, be a nonempty compact convex subset
of a locally convex topological vector space Ey, and Fy, : X, x Y* — R’ be a multimap
with nonempty values. Let Ay, :Y k— X, be a multimap with nonempty convex values
such that for each xi, € Xy, A,;l(xk/) is open in Y* and A_k/. is an w.s.c. multimap. For
each k€1, let By : Y, — Y* be a closed multimap with nonempty convex values. For
each k €1, assume that

(i) Y = U{inty, B, '(0F): yF e YFY,
(ii) 8" : Y, x Y¥ — R is continuous multimap with compact values,
(iii) for any y* € Y*, up — S"r(wy, y*) is R, -quasiconvex.

Then there exist 3= (9 )rer €Y, i = (it wer €Y with i € Ax(ii*) and i* € By(y)
and there exists Zy, € Fy, (X, i ") such that

‘0
Zg, — Z_k,- € —int R_:’,

for all zy, € Fy,(xi, %), x4, € Ay, (%) and for each k €1 and j € Jy.

Proof. For each k €1 and for all n€ N, we define H; ,: Y* — Y; by

- 1
Hio(uF) = {yk e A (*): min " (yy, ") < min S7r (A (), uF) + }
n

As in the proof of Theorem 4.1, for all y* € Y*, H; ,(»*) is a nonempty convex set
and

Yk = U{intyk ijnl(uk): up € Y }.

Since Y = {inty, B; '(3*): y* € Y*}, it follows from Theorem 3.2 that there exist
0¥ =0Viker €Y =11, ¥y and it = (4t Jker € Y such that

wIk € Hin(uit®) and i " € Br(uiy).

Therefore, , 7« € Ax(,it ©) and

, 1
min S (, § o it ©) < min S" (A (i1 ), 41 ¥) + —.
n
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Let ,ay E_SW’f(n)'/k,nﬁk) be_ such that ,a; =min S"¢(, 74, i %). As in the proof of Theo-
rem 4.1, Ay (Y*) and S"(4,(Y*), Y¥) are compact and thus there exist a subnet {7 }
of {,7«}, a subsequence {,ar} of {,ar} and y € A (Y*), a e S" (4 (Y*), Y*) such
that
we)(Pr) = Yk and  uoyar — ag.

Since for each k €1, By : Yy — Y* is closed and Y* is compact, it follows from Lemma
2.2 that B : Y, — Y* is an u.s.c. multimap with compact values and By(Y}) is compact.
Therefore, there exist a subnet {,,(“)ﬁk} of {,i*} and it * € By(Y}) such that

=k =k
(o) — U

As in the proof of Theorem 4.1, for each k€1, A;:Y* — Y} is a continuous multi-
map with compact values. By Lemma 2.3, the function u* — min S"*(4;(u*),u") is
continuous for each k € 1. Since nuyar < minS"s(Ay(uioyit ¥ ), iyt ©) + 1/n(ar), letting
n(o) — oo, we have
ar < min " (A, (u*),u"),  for each kel

As in the proof of Theorem 4.1, we see that for each k€1, ar € " (Ap(@*),a "),
Vi = (% )jes, €Ar(i*) and % € Bi(j). Therefore, for each k€l and j€Jy, there
exist %y, € Ay, (1), Z, € Fy, (¥, %) such that

ar=Y Wy -2y <> Wi -z, (5.1)

J€Jk JEK

for all z, € Fy,(xy,, i), x, € Ay, (*). For each fixed k €7 and fixed jE€J, let yx =
(xhs)sejk G/l-k(ﬁk) and z; = (st)se]k S HSEJk qu(x]]gs,ﬁk) with xy, = Xy, and zy, = Zj, for
sE€Jy, s # j, in (5.1), we have

Wi, -2, < Wi, - 2k,
for all Z, GFk/.(xkj,ﬁk), X, GA_k/.(ﬁk) and for each k €/ and j € J;. Therefore,
o, — 5, & —int R,
for all z, eij(xk/,ﬁk), X, EA_kj(ﬁk) and for each k€7 and jeJ;,. [
Theorem 5.2. Under the assumption of Theorem 4.2, we further assume that for
each k€1, By:Y, — Y* is a closed multimap with nonempty convex values and

Y, = U{inty, B '(3%): yF € Y*Y. Then there exist § = (§i)ier €Y, = (iix)kes €Y
with ji € A(@*) and @* € By(31) and there exists Zy, € Fy (3,1 ") such that

‘
Zg, — Z_kj ¢ —int RJ:",
for all z, € Fy (xi,, %), xi, € Ay, (1) and for each k €1 and j € J, where 3 =(%y,);ey;-

Proof. For each k€1 and je€J, let Hy,,: YF —o Xy, and py, i Z, — R be defined as
in the proof of Theorem 4.2 and let

Gin(V) = [ Hi ()
JEJk
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As in the proof of Theorem 4.2, we can show that Y* = | J{int G,;nl(yk): Vi € Yi}.

Since Y; = (J{int Bk_l( y&): Yk € Y*}, it follows from Theorem 3.2 that there exist
0¥ =V iker €Y and i = (uilg)ees €Y such that ,7i € Gra(uii*) and ,iig € Br(n 3 *).
Therefore, for each k€1,

Pk = (uXr))jes, €Ar(nil©)

and
. - -k . n -k -k ~-k 1
min pkj . Fk/(nij,nl/l ) < min pk/ . Fk/((Akj(ﬂu )H’lu )Hlu ) + ;

where , 7% =(,7 j)jeLj#- Following the arguments of Theorems 4.2 and 5.1, we get
the conclusion. [
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