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1. Introduction and Formulations

Let [ be any index set and for each 1 € I, let X; be a Hausdorfl topelogical
vector space and K; a nonempty convex subset of X;. We set K = ﬂlef K,
X =[]y Xiand K* = H;‘ei. j#i ¥y and we write K = K' x K;. Forz € K,
z' denotes the projection of z onto K* and hence we also write z = (=%, ;).
For cach i € I, let ¥; be a topological vector space and let Ci: K —2Y bea
multivalued map such that for each = € K, Ci(z) is a proper, closed and convex
cone with int Ci(2) # @, where int C and 2Y denote the interior of C and the
family of subsets of ¥, respectively. For each i € I, let Fi: K x K; — 2" and
Ai + K — 2K be multivalued maps with nonempty values. We consider the
following system of generalized vector quasi-equilibrium problems:

. Find € K such that for each i € I, Z; € A;(Z) and

(§GYQEE) { Fi(Z,5) € —int Cy(z), for all y € AL(z).
If for each ¢ € I and for all z € K, Ai(z) = K, then (SCVQEP) reduces
to the system of generalized vector equilibrium problems (for short, SGVEP)
which is introduced and studied by Ansari et al [5] with applications to Nash
equilibrium problem for vector-valued functions.

If I is a singleton sct, then (SGVQEP) reduces to a generalized vector
quasi-equilibrium problem which contains generalized implicit vector quasi-
variational inequality problem, generalized vector quasi-variational inequality
and variational-like inequality problems and vector quasi- equilibrium prob-
lems as special cases. For further detail on generalized vector quasi-equilibrium
problems and their applications, we refer [2] and references therein.

Examples of (SGVQEP):

For cach i € I, we denote by L{X;,Y;) the space of all continuous linear
operators from X; into ¥; and let D; be a nonempty subset of L(X;,Y;). For
cach i€ I, let 7; : K — 2P be a multivalued map with nonempty values.

(1) System of Generalized Implicit Vector Quasi- Variational Inegqualities:
For cach i € [, let ¢; : D, x K; x K; — Y: be a vector-valued map.
The problem of system of generalized implicit vector quasi-variational
inequalities (for short, SGIVQVIP) is to find £ € K such that for cach
tel, Z; € A;(T) and

Yy, € Ailz), 3@ € Ty(z) - villli, &, 0) ¢ —int Cy(z).



Setting for each i € I,

Fi(z,y) = 0:(Ti(x), i, yi) = {wilus, zi,9:) : wi € Ti(x)}-

Then (SGVQEP) coincides with (SGIVQVIP).

For Y; = R and C;(z) = R_ for all z € K and for each i € I, (SGIVQVIP)
is called the problem of system of generalized implicit quasi-variational in-
equalities. Further, for all £ € K and for each i € I, Ai(z) = K, it is
called the problem of system of generalized implicit variational inequali-
ties. Ansari and Yao [7] studied such a problem with application to Nash
equilibrium problem [20].

If I is a singleton set, (SGIVQVIP) reduces to the generalized implicit
vector quasi-variational inequality problem.

The (SGIVQVIP) contains the following problems as special cases:

(i) For each i € I, let 8, : K x Dy — D; and 7; : K; x K; — X; be

bifunctions. If for each i € I,
Ui(Ti(z) 23, v:) = (0i(z, Ti(2)), mi(ws, 24)) =

{(Bi(z,us), mi(yi, 24)) : wi € Ti(x)},
then (SGIVQVIP) reduces to the problem of system of generalized
vector quasi-variational-like inequalities (for short, SGV QVLIP) (I)
which is to find Z € K such that for each i € I, Z; € A;(Z) and

Yy € A(E), 3u; € Ti(E) ¢ (6:(E, %), mi(w, ) € —int Ci(Z),

where {s;,z;) denotes the evaluation of s; € L(X;,Y;) at z: € X;. If
[ is a singleton set, then (SGVQVLIP)(I) becomes the generalized
vector quasi-variational-like inequality problem. The strong solution
(that is, 1; does not depend on y;) of (SGVQVLIP)(I) is studied by
Chen et al [12] and Lee et al [19], see also references therein.

1f for each i € I, 6;(x,u;) = u; for all z € K, then (SGVQVLI P) (I)
becomes the following problem denoted by (SGVQVLIP) (II): Find
# € K such that for cach i € I, T; € A;(Z) and

Vyi € Ai("f)) 3ﬂ-i € T;(j) : (ﬁi:ﬂi(yiafi)) ¢ —int C'l(f)
For Y; = R, Ci(z) = R_ and Ai(z) = K; for all z € K and for each

i € I, this problem is studied in [7] with application to the Nash
equilibrium problem [20]. !

If for each i € I,
Ui(Ti(z), i, v:) = (Ti(x), s — i) = {{wi, 05 — 7))+ ui € Ti(2)},

then (SGIVQVIP) reduces to the problem of system of generalized
vector quasi-variational inequalities (for short, SGVQVI P) which is
to fnd # € K such that for each i € I, Z; € A;(Z) and

\"-‘i € A,’(i’), 3?1,' € T,(i‘) 3 (ﬁ;,y.- — :1_3,') ¢ —int C;(SE)



(2) System of Vector Quasi-Equilibrium Problems (for short, SVQEP): For
each 7 € I, let F; be a single-valued map, then (SGVQEP) is equivalent
to the following system of vector quasi-equilibrium problems:

Find z -€ K such that for each i € I, Z; € A;(Z) and
(SVQEF) { (55 )ik CHEY,  Tor all g € Ai(E):

It is introduced and studied by Ansari et al [1] with applications to the
Debreu type equilibrium problems for differentiable vector-valued func-
tions.

The (SVQEP) contains the following problems as special cases:

(i) Ifforeachi € I, Fi(z,y:) = (Ti(z), yi—z;), where T; is a single-valued
operator and z; is the ith component of z, then (SVQEP) reduces
to the problem of system of vector quasi-variational inequalities (for
short, SVQVIP) which is to find £ € K such that for each i € I,
z; € A;’(i‘) and

(Ty(%),y; — &;) ¢ —int Cy(z), for all y; € A;(T).

If for cach ¢ € [ and for all z € K, Ci(z) = Ry and Y; = R,
then (SVQVIP) reduces to the system of quasi-variational inequali-
ties studied by Ansari et al [3].

(ii) For cach i € I, let v; : K — Y; be a vector-valued function. If for
cachi € I, _
Fi(z,yi) = iz’ i) — wala),
then (SVQEP) is equivalent to the following Debreu type equilibrium
problem for vector-valued functions [13]:

(DEP) { Find Z € K such that Vi € I, ; € Ai(Z) and
@i(Z', 4:) — @i(Z) ¢ —int Ci(), for all y; € Ai(Z).

From the above examples/special cases, it is clear that (SGVQEP) is more
general and unified format which contains many known problems as special
cases. A comprehensive bibliography on vector equilibrium problems and vec-
tor variational inequalitics can be found in a recent volume (17] edited by F.
Giannessi.

In this paper, we establish some existence results for a solution to (SGVQEP)
with or without involving ®-condensing maps. As consequences, we prove the
existence of a solution of many known problems mentioned above. Ansari et al
(1] used (SVQEP) as a tool to prove the existence of a solution of Debreu type
equilibrium problem for vector-valued but differentiable functions. As applica-
tions of our results we derive the existence results for a solution of Debreu type
equilibrium problem for vector-valued but nondifferentiable functions.

2. Preliminaries

In this section, we recall some definitions and results which will be used in
the sequel.



Definition 2.1. Let W and Z be topological vector spaces. A multivalued
map T : W — 2% \ {0} is said to be closed if its graph is closed in W x Z.

Definition 2.2. [8] Let W and Z be topological vector spaces. A multi-
valued map T : W — 2% \ {0} is called upper semi-continuous on W if T has
compact values and for each zge W and for any open set V' in Z containing
T'(zo) there exists an open neighborhood U of zq in W such that T{z) CV for
allz e U.

Definition 2.3. [21, 22] Let E be a Hausdorff topological vector space and
L alattice with least element, denoted by 0. A mapping & : 2% — L is called a
measure of noncompactness provided that the following conditions hold for any
M, N e 2%,

(i) (M) = 0 if and only if M is precompact (ie., it is relatively compact).
(i) ®(convM) = ®(M), where convM denotes the closed convex hull of M.
(iii) (M UN) = max{®(M), ®(N)}.

It follows from (iii) that if M C N, then B(M) < O(N).

Definition 2.4. [21, 22] Let ® : 2 — [ be a measure of noncompactness
on £ and D C E. A multivalued map T : D — 2F is called ®-condensing
provided that if M C D with ®(T(M)) > ®(M) then M is relatively compact.

Remark 2.1. Note that every multivalued map defined on a compact set
is necessarily ®-condensing. If F is locally convex, then a compact multivalued
map (i.e., T(D) is precompact) is ®-condensing for any measure of noncom-
pactness ®. Obviously, if T : D — 2F ig ®-condensing and if T : D — 2F
satisfies T'(z) C T'(z) for all € D, then T’ is also ®-condensing.

Definition 2.5. Let W and Z be topological vector spaces. A point 7 € W
is said to be a mazimal element of a multivalued maps T: W — 22 if T(z) = 0.

We shall use the following maximal element results for a family of multival-
ued maps to establish the existence results for a solution of (SGVQEP).

Theorem 2.1. [14] Let [ be any index set. For each i € I, let K; be a
nonempty and convex subset of a Hausdorff topological vector space X;, and
let 5;: K =[],c; Ki — 2% be a multivalued map. Assume that the following
conditions hold:

(i) For each i € I and for all z € K, Si(z) is convex.
(if) Foreachi € Iandforallz € K, z; ¢ Si(z), where z; is the ith component
of .
(iii) For each i € I and for all y; € K;, S (i) is open in K.
(iv) There exist a nonempty and compact subset N of K and a nonempty,
compact and convex subset B; of K; for each i € I, such that for all
z € K\ N there exists i € | satisfying S;(z) N B; # 0.

Then there exists # € K such that S; (£) =0 for cach i € I.

Remark 2.2, If for each i € I, K is a nonempty, closed and convex subset
of a locally convex Hausdorff topological vector space X;, then condition (iv)
of Theorem 2.1 can be replaced by the following condition:



(iv)’ The multivalued map § : K — 2¥ defined as S(z) := [1;¢; Silz) for all
.z € K, is dwondensing. . .

{See, Corollary 4 in {11)).

3. Existence Results

Throughout this paper, unless otherwise specified, we assume that [ is ahy
index set and for each $ € {, Y; is & topological vector space, K = Hier K,
C; : K - 2% is & multivalued map such that for all z € K, Ci{z) is a proper,
closed -and convex cone with int Ci(z) # #. For each ¢ € I, we also assume
that A; : K — 2% i3 a multivelued map such that for all z € K, Adx)
is nonempty and convex, A;'{y:) is open in K for all yi € K; and the set
F =z € K:z;€ A{z)} is closed in K, where z; is the ith component of .

Theorem 3.1, For each i € 1, let K be a nonempty convex: subset of a
Hausdorff topological vectorapace X an dlet F; : & x K; —» 2% be a multivalued
map with nonempty values. For each ¢ € I, assume that . , S

(i) for allz € K , Fi(z, ii) & —int C‘;-v(z), where z; is thé.it{h component, of T;

(ii) for all z € K, the set {y € Ki: Fi(z,y:) € —int Ci{z)} is convex;

(iii) for all y; € K;, the set {z € K : Fi{z,y:;) € —int C;{(z)} is closed in K;

(iv) there exist a nonempty compact subset N of K and a nonempty compact
corivex subset B; of K for each i € I such that for each x € K \'N there
exist i € T and §f; € B; satisfying §; € A;(z) and Fi(z,§;) C —int Ci(z).

Then (SGVQEP) has a solution.

Proof. For each i € I, we define a multivalued map Q; : K — 2Ki py
Qi(z) = {y; € K : Fi(z,y:) C —int Ci(x)}, forallz € K.

By condition (ii), for each i € I and for all z € K, Q;(z) is convex. Condition
(iii) impliés that for each i € I and for all y; € Ki, Q7'(%) = {z € K :
Fi(zx,yi) € —int Ci(z)} is'open in K. Condition {i) implies that for each i € [
and for all x € K, z; ¢ Qi(z).

For each i € 1 and for all z € K, we define another multivalued map
Si: K — 2Ki by :

S:;(z) _ [ A@)NQux), ifz€~

i Ai(z), ifxe K\ﬁ:

Then, clearly for each ¢ € I and for all £ € K, 5i(z) is- convex and ; ¢ S4a).
Since for each i €7 and for all y; € K, T e
stiw) = (A7 wd e @) U (e Ao altw)

(see, for example, the proof of Lemma 2.3 in {15]) and A; Yi), Q7 y:) and
K\ /7 are open in K, we have S;*(y:) is open in K. ,

Condition (iv) of Theorem 2.1 is followed from condition (iv). Hence by
Theorem 2.1, there exists £ € K such that Si(Z) = @ for each i € I. Since for



each i e I andfor all z € K, A;(z) is nonempty, we have A;(Z) N Qy(2) = 0 for
each i € I. Therefore for eachi € [,

%; € Ai(Z) and Fi(z,u:) Z —int Ci(z), forally; € A.-(a‘:).‘ El

Next we establish an existence result for a solutiqﬁ to (éGVQEP) ihV&vizig
$-condensing maps..

‘Theorem 3.2. For each i.€ 7, let K, be a nonempty; closed and convex
subset of a locally convex Hausdorff topological vector space X;, F : K x K; —
2¥¢ a multivalued map with nonempty values and let the multivahed map
A =Tl A+ K - 2K defined as: A(z) = ], Ai(z) for all T € K, be &
condensing: Assume that the conditions (i) - (iii) of Theorem 3.1 hold. Then
(SGVQEP) has a selution. I ; v

Proof. In view of Remark 2.2, it is sufficient to show that.the: multivalued
map S : K — 2X defined as 5(z) = [;¢, Si(z) foralt z € K, is ¢-condensing,
-where S;’s are the same as defined.in the proof of Theorem 3:1- By the definition
of Sy, Si(z) C Ai(z) for each i € J and for all z € K and therefore S(z) € A(z)
for all z € K. Sincé A is ®-condensing, by Remark 2.1, we have $ is also
®-condensing. - S )
Definition 3.1. {6} Let W and Z be topological vector spaces and M a
nonempty convex subset of W and let P: M — 2% be a muitivalued map such
that for each x € M, P(z) is a closed, convex cone with nonempty interior. A
multivalued map F : M x M — 22\ {8} is called P(z)-quasiconvez-like if for
all z,91,y2 € M and t € [0, 1], we have either , ‘

F(z,tyr + (1 - thin) € Flz,5) - Pz),

or o
F(z,ty; + (1 = t)ya) C F(z,3) - P(a).

Remark 3.1. (a) If for each i € I, F; is C;-quasiconvex-like, then the set

{vi € K : Fi(z, ) C —int Ci(z)}.is convex, for each z € K (sce, for example,
the proof of Theorem 2.1 in [6]). L -
(b) If for each i € I, X; is loeally convex Hausdorff topological vector space,
the multivalued map W; : K — 2" defined by W;(z) = Y; \{-int Ci(z)} for all
z € K, is closed on K and for each y € K, F(.,y) is upper semicontinuous on
K, then condition (iii) of Theorem 3.1 is satisfied; See, for example, the proof
" of Theorem 2.1 in [6]. ' ‘ ‘

Definition 3.2. {4} Let W and Z be topological vector spaces, M a noncmpty
- convex subset of W and D a nonempty subset of LW, Z), Let T : M — 2P\ {8}
‘and P: M — 2% be multivalued maps such that for each ¢ € M, P{z)is'a
closed, convex cone with nonempty interior. A function ¥: DX M x M — Z
is called P(z)-quasiconvez-like if for all 2,7, € M and ¢t € [0, 1], we have
either for all u € T(z),. ) - v

Vw2t + (1 - 1)) € Y(u,z,3) - P(a),

or DR ‘
PYlu,z,ty + (1 - thya) € W(u,z,y2) — P(x).



From Theorems 3.1 and 3.2, we derive the following exlstence :esult for a
wlution of (SGIVQVIP). ~ .

Camlhx;' 3.1. For each ¢ € 1, let K‘ be & nonempty convex subset of a
localiy convex tppoioml vector space X; and let. D; be a npnempty subset of
L(X;,Y:). Foreachi € I, T; : K — 20 be an upper semicontinuous multivalued
map with nonempty \uluésandw. : D xK xK - Y; beavecsor«vaiued map.
Fbreuhte 1, assume that -

(z) the muitlvalued map W, : K- €14 deﬁned by Wilz) = Y.- \ {—int Ci(z)}
for all 2 € K, is closed on K; '

(ii) for all z € K and u; € Ti(®), Yilu;, 4, ) ¢ ~int Ci{z), where z;.is the

‘ ith component of z; :

(iii) ¢ is Ci(x)-quasiconvex-itke;

(iv) for all y; € K;, the map (u;,z;) z,b,(u.,a;;,y‘) is upper semxcontmuous
on D; x K;;

{v) there exist a nonempty compact, subset Nof K and a nonempty compact
convex subset B; of K; for each i € / such that for each z € K \ N there
exist i € I and §j; € B; saxlsiymg 7 € A; (:c) and ¢i{u;, T;, ﬁ,) € —int Ci{x)
for’ all u; € T(::)

Then (SGIVQVIP) has a solution.

Proof. Although it is similar to the proof of Corollary lin {5], we include
it for the sake of completeness of the paper.
For each i € I, we set

F.(I yi) = wl(Ts(m)y-Tuy() = {Vh(u., zny-) u; € T(I)}

forallz € K and y; € K Then, all the condltnons of ‘Theorem 3.1 can easxly
be verified except for condition (iii). Hence we only. need to prove that the set

D= {z € K :3u; € Ty(z) s.t. Yi(ui, 7, 3:) ¢ —int Ci(z)}

is closed m K for ally; € K i We prove it for a fixed i.
Let {z} be a net in Zsuch that z converges to z* € K. Then

Bu'u €T; (:B,\) s.t. wt(ul.\,zt,\ryt) ¢ —int C; (-’L‘,\)
where xu is the ith component of z,, and therefore
Vil , 24, y.') € Wi{z,).

Let A" = {x3} U{z*}. Then K is compact and w;, € T{(A) which is also
compect. Therefore u;, has a convergent subnet with limit u;,. Without loss
of generality, we may assume that {u;,} converges to u;,. Then by upper
semicontinuity of T, we have u,;, € Ti{«*). Since d:,( -1 ¥i) is continuous-and

the graph of W, is'closed, we have '

wi(uu)ziuyi) mvefges tO '/)1(“:.,3?:.'%) € W(z )

and hence Vh(u;..zz,, %) ¢ —int C{z*). Therefote, z* € 2 and thus Dis
closed in K This completes the praof. 8]



 Corollary 3.2. For each i € 1, let K;, X, D;, %, T; and W; be the same as
in Corollary 3.1 and let the multivalued map A = Thes At K= 2?‘ defined as
A(z) = [1;; Ai(z) for alt € K, be $-condensing. Assume that the conditions
(i) - (iv) of Corollary 3.1 hold. Then (SGEVQVI P) has a solution.

Let W and Z be Hausdorff topological vector spaces and o be the family of
all bounded subsets of W whose union is total in W, that is, the linear bull of
\J{U : U € 0} is dense in W. Let Bbe a neighborhood base of 0 in Z. When
U runs through o, V through B, the family ' B

M(Ua V) = {{ € L(W» Z) : Uz*GU(ftx) c V}

‘ is a neighborhood base of 0 in L(W, Z) for a unique translation-inva'riant topol-

ogy,’called the topology of uniform convergence on the sets U € ‘a, or, briefly,

the o-topology (see {24}, pp. 79-80}). ,
In order to derive existence results for solutions of the (SGVQVLIP) and

(SGVQVIP) from Corollary 1, we need the following useful result due to Ding,

" and Tarafdar [16]. R

Lemma 3.1. L;t» W and Z be real Hausdorff topolbgical vector sbaces o

and L(W, Z) be the topological vector space under the o-topology. Then, the
bilinear mapping (.,.) : L(W, Z) x W —.,Z is continuous on L(W, 2} x W.

_Next we derive the existence results for a solution of (SGVQVLIP) by using’
Corollaries 3.1 and 3.2. '

Corollary 3.3. For each i € I, let Y; be a HausdorfT topological vector space
and let K;, Xi, D;, T; and W; be the same as in Corollary 3.1. Foreachi € I, let
L(X;,Y;) be equipped with the o-topology. For eachi€ I, let ny : Kix K; — X
be affine in the first argument and continuous in the second argument such that
ni(z;, ;) = 0 for all z; € K;. Assume that there exist a nonempty compact
subset N of K and a nonempty compact convex subset B; of K; for each i € /
such that for each z € K \ N there exist i € I and §; € B; satisfying §; € Ai(z)
and (u;, 7(%i,2:)) € —int Cifx) for all u; € Ti(z). Then (SGVQVLIP) has a
solution.

Corollary 3.4. For each i € I, let K;, X;,Y;, Di,m,T; and W; be the same
as in Corollary 3.3 and let L(X;, Y;) be equipped with the o-topology. For each
i€ I, let mi: Kix K; — X; be affine in the first argument and continuous in the
second argument such that (%, %;) = 0 for all z; € K;. Let the multivalued
map A = [L;c; Ai 1 K — 2% defined as A(z) = [];¢, Ai(2) for all z € K, be
®-condensing. Then (SGVQVIP) has a solution.

" In the last of this section, we have the following existence results for a
solution of (SGVQVIP). RN -

Corollary 3.5. For each i € I, let K;, X,,Y;, D;,T; and W; be the same
as in Corollary 3.3 and let L(X;, ;) be equipped with the o-topology. Assume
that there exist a nonempty compact subset N of K and a nonempty compact
convex subset B; of K; for each i € I such that for each z € K \ N there exist
i€ I and §; € B; satisfying # € Ai(z) and (u;, §; — z;) € —int Ci(z) for all
u; € Ti(z). Then (SGVQVIP) has a solution. Lo '



. Qorollary 3.6, For each § € ], let K;, X, Y‘,D‘,T‘ and W; be the same
as in Coroflaty 3.3 and et L(X‘.Y) be equipped with the o-topology. Let the
multivalued map A = n, — 2K defined a5 A(z) n‘e, .(z) for all
ek be & ' ';rhen{scmvmm;mmm : |

‘ idean RP: RY, mpecﬁvely, and K. be a,nonempty
convex subset of X;. For eadn €Tt Ci: K =2 be amuluva.!ued map such
that for alt x € K, C{z) is'a proper, closed and convex coné w:th int Ci(z) #0
“and' RY € Ci(z). Let the multivalued map A = Tlies Ai : K — 2€ be defined -
as A(z) [ TierAi(z)) for ot © € K. For each i«e It o+ K=Y bea
given vector-valued function. We consider the following system of vector quas-
optimization.-problems, {in short, SVQOP) which is to find £ € K such that
a:EA(a:) and for each'1 € [,

o) - pil®) ¢ “int C; (f) for ail ye A«(z),

Whem wi(z) = (‘Pn(zl» ‘Fta(z)n ’991'“(3» wdfm’ mh le L "‘:\:{l:' o ik
: K — R'is a function.
Wc can choase y € A{z) in such a way that i = . Then :(SVQQP} reduces
to the Debreu type equilibrivm problem. for vector-ualued. functions whxch is to
ﬁnd z 6 K such that for each 1 E I, z € Ay (x) and

‘Px(z V¥i) = ‘Pt(x) ¢ —»mLC,(zz) fot au i € A,(i‘)

It is clear that cvery solution of (SVQOP) .is also a solution of the Debreu
type equilibrium problem for vector-valued functnons, but the converse need not
be true. - .

" Now we recall - some d&ﬁmt}ons

* Definition 4. 1. A rea]-valued function f RP < R is sa:d to be laca(lyv
Lipschitz if for any z € RP there exist a nexghborhood N(z) of z and a posmve
mstam k guch:that ~ -~

I£(z) - f(y)i“-“: Kz = oll for all 2,y € N(3). -
The Clarke generahzed dmzctzontd derivative 19} of a locally Lipsdmz fune-
tion f at z in the du‘ectxon d denoted by f°(a: RN
f°£z.d) = [im sup M———'—L
HO

The Cla.rke gemm“v'wnd gradzcnt {Qj -of & locally’ LzMﬁz furction fatzis
defined as i

6f(x) {.5 € R" f"(z d) > (£, d) for all dew}

. If f is eonvex, thel; the; Chﬂw gencralized gradient coingides with the sub-
differential of f in the sense of convex analysis {23].



" The generalized invex functxo’n was introduced by Craven [10} as & general-
xzatxon of invex £uncnons 8.

Deﬁnihon 4.2. A locslly Lipschitz fnnctncm f: " RP - R is saad to be
generalized invez at z w.r.t. a given function n:RP x R? — RP if

J) - f(z) 2 (€,n(y, 2)) for all € 8f(z) and y € R™.

‘For each 4 €I, let ¢ : K — Rbe a locally Lipschitz function and let
z € K, z; € K;. Following Ciarke [9}, the generalized directional derivative
at x; in the direction d; € K of the function ¢i(z1,...,Tj1,",Zj41s -1 Tn)
denoted by ¢= (z; d; ) is '

v_.:r

¢%(z:d;) = lim sup {@(xl, L Zio1, U5+ 5, T,y Bn)

—~i(T1, - Zim1, Yir Tl - - - 1T}
The partial generalized gradient [9] of the function ¢;(xy, ..., 21, Tj41,.-
at z; is defined as follows:
8i¢i(z) = {§; € X; : #Y(x3d;) 2 (§5,d;) for all d; € K;}.
Lemma 4.1. {9} For each i € I, let ¢; : K — R be locally Lipschitz. Then
for each i € I, the multivalued map 8;¢; is upper semicontinuous.
Definition 4.3. For each i € I, ¢; : K — R is called generalized inver at z
w.r.t. a given function 7; : K; x K; — R if
¢i(y) = di(x} 2 (&, miyi, 21)) for all & € 8;¢i(z) and y € K.

Proposition 4.1. For each i € [ and for alll € Z, let ¢;, : K — R be
gencralized invex w.r.t. 7;, ¢ K; x K; — X;. Then any solution of (SGVQVLIP)
is a solution of (SVQOP) with Ti(z) = ,cp.(x) for each 1 e T'andforallz € K
where 8ii(a) = (0ipi (3), Diia 2, -, Oy, () € RPXS-.

Proof. Although it is similar to the proof of Proposition 4.1 in [5], we
include it for the sake of completeness of the paper.
For the sake of simplicity, we denote by ¢i(z) = (¢, (2), ..., i, (z)) € RY,
uy = (4, .. ,uiw‘) where u;, € d;p;,(z) for allt € £, and
(us, m(yi},xi)) = ((ui,» M, (yi)zi»': ey (ui.“ 2 Thig; (vi,zi))) € R%.

Assumethat Z € K'is 5 solution of (SGVVLIP). Then foreachi€ I, T; € Ai(Z)
and
Yy € Ai(&), Iy, € Fip;,(T) for all l € Lsuc h that

(Biy s, (Wi, E0),s - (B, iy, (5, 24))) € —int Ci(2).
We can rewrite this as '

Yy; € Ai(Z), 3% ‘E“&‘pi(f)‘ o (B i 20)) ¢ ~int Ciz). (%)
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Since for each i € I and for all { € 1«, Pu is generalized invex w.r.t. n;,, we

wily) - e (%) 2 (u‘.,n..(yn:cg)) for el u; € as‘Pu(f) and ve A),
ubat is, for e‘ch ) E L |
T )~ 0e®) 2 ey 7)) For all i € Bipu(@) and y € AE).
Therefore for each i€ I and for all u; € dppi{E), we have

wily) —wiZ) € (ﬁi.'ﬁ(w,fi)) +R¥ R ; o
C (ﬁ,‘, ﬂ{(gi,fi)) + int C’(f) (t*) )

From (*) and (*%), we have go,(y) ¢.(£) ¢. -—mt C.(x) Hence Z € K is a
solution of {SVQOP). . o

Rest of the paper, unléss otherwise speciﬁed 6,«p.(z) and {ui, nilyi, x)) are
the samé .88 defined in Proposition 4.1.

Theorem 4.1. Foreachze I and'for all { € L, ienp,, K — R be
generatized invex w.tt. n;, : Ki x K; — X; such that 75, is affine in the first
argutent, continuous in the second argument and n;,(z;,z;) = 0 for all z; € K.
Assume that there exists r > 0 such that for all z € K, ||} > r, there exist
€l aud Pe € K with [{fi]li < r satisfying *y, € Ai(z) and

(u,, (i, z;)) € —int C {(z) for all u; € a.w.(:c),

where || - || and || - ||; denote the norms on X and X., respectwely Then
(SVQOP) has a solution. ,

Proof.. For each ¢ € I and for alz € K Ti(z) = .cp,(z) is an upper
’semxcontmuous multwalued ‘mep by Lemma 4.1.. It is easy to check that all
the conditions of Corollary 3.3 are satisfied. Hence from Caroliary 3.3 and
Propos:tlo_n 4 1 xt.follows that (SVQOP) has a solution. ) 0

- ‘Theorem 4.2. For each i € [ and for all l € Z, let ¥, : K — R be
genemhzed invex w.r.t. m;, @ K; x K; — X such that n;, is affine in the first
argument, continuous in the second’ argument and 7, {z;,z;) = 0 for all z; € K;.
Let: the multivalued map A4 = J],.; Ai : K — 2X defined as A(z) = [],, Ai(z)
for all z € K, be ®-condensing. Then (SVQOP) has-a solution. »

In the next three corollaries, we set ¢{z) = (¥, (z),...,9: () € R%,
U = (u,,.. yul,") (i, yi —x4) = ((uury! - ), (ul. WYi 1"3) € R% and

v &w‘(x) B, (2), Bipin(E), - Bii, () € W"’“" where dipi () (j =
..,4:) is the partial subdifferential in the sense of convex analysls s

Corollary 4.1. For each i € Iandfor all e 2, let 9;; : K. — R be
convex' and lower setmcontmuous Assume that there exists r > 0 such that for
all € K, {If > r, there exist : € { and § € K; with ||§i]l; < r satisfying
% € A;(z) and '

{ut, §i = 23} € ~int Cilz) for all wi € Dupi(x), -
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where || H and ek denote the norms on X and X;, respectxve}y TFhen
(SVQOP) has a solution.

Corollary 4.2. For each i € I and for alt | € L, let i, K — R be convex
and lower semicontinuous on K. Let the multivalued map 4 = [}, 4 :
K — 2K defined as A(z) = H,G, i(z) for all z € K, be ®-condensing. Then
(SVQOP): has asolution. - - : E
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