
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 113, No. 3, pp. 435–447, June 2002 (2002)

Characterizations of Solutions for
Vector Equilibrium Problems1,2
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Abstract. In this paper, we characterize the solutions of vector equi-
librium problems as well as dual vector equilibrium problems. We
establish also vector optimization problem formulations of set-valued
maps for vector equilibrium problems and dual vector equilibrium
problems, which include vector variational inequality problems and
vector complementarity problems. The set-valued maps involved in our
formulations depend on the data of the vector equilibrium problems,
but not on their solution sets. We prove also that the solution sets of
our vector optimization problems of set-valued maps contain or
coincide with the solution sets of the vector equilibrium problems.
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1. Introduction

Equilibrium problems, which include variational inequality, optimiz-
ation, and complementarity problems as special cases, have been studied by
Blum and Oettli (Refs. 1–2) and by Bianchi and Schaible (Ref. 3). Auch-
muty (Ref. 4) introduced a variational principle for variational inequalities
in finite-dimensional spaces. Blum and Oettli (Ref. 1) established variational
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principles for equilibrium problems, which generalize the gap function
(Refs. 5–6) used in connection with variational inequalities. Very recently,
Chen et al. (Ref. 7) introduced the gap function for vector variational
inequalities introduced by Giannessi (Ref. 8). Inspired by the notion of vec-
tor variational inequality, the equilibrium problem has been extended to
vector-valued functions and is known as the vector equilibrium problem
(VEP), which contains vector optimization problems, vector variational
inequality problems, and vector complementarity problems as special case.
This problem was studied by Ansari et al. (Refs. 9–10), Bianchi et al. (Ref.
11), Fu (Ref. 12), Hadjisavvas and Schaible (Ref. 13), Konnov (Ref. 14),
Lee et al. (Ref. 15), and Oettli and Schläger (Refs. 16–17). But to date, it
appears that no work has been done on the characterization of solutions for
vector equilibrium problems. This paper is the first effort in this direction.

In Section 2, we give some preliminaries and formulations of our prob-
lems. In Section 3, we establish some characterizations of solutions for vec-
tor equilibrium problems by means of solving the zero inclusion problems
for set-valued maps. We introduce also vector optimization problem (VOP)
formulations of set-valued maps for the (VEP). We prove that the solution
sets of our vector optimization problems contain or coincide with the solu-
tion set of the (VEP). Section 4 deals with the characterization of solutions
for the dual vector equilibrium problem. We propose also suitable vector
optimization problem formulations of set-valued maps for the dual vector
equilibrium problem. Furthermore, we consider the relationships between
the solution sets of these vector optimization problems and the (VEP).

2. Preliminaries and Formulations

Let X and Y be topological vector spaces, and let C be a pointed closed
convex proper cone in Y, with int C≠∅, where int C denotes the interior of
the set C. Then, C induces a vector ordering in Y setting, for all x, y∈C,

x⁄y, if and only if yAx∈C,

x �⁄y, if and only if yAx∉C.

Since int C≠∅, we have also a weak order in Y setting, for all x, y∈C,

xFy, if and only if yAx∈int C,

x �Fy, if and only if yAx∉int C.

The orderings ¤ , �¤, H, �Hare defined similarly.
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Let K be nonempty convex set in X, and let f: KBK→Y be a bifunction
satisfying

f (x, x)G0, for all x∈K.

In this paper, we shall consider the vector equilibrium problem (VEP): find
x0∈K such that

f (x0 , y) �F0, for all y∈K. (1)

Existence of solutions of this problem has been investigated in Refs. 11–13
and 16.

For the case of a moving cone, it has also been studied in Refs. 9 and
15. For a direct application of the (VEP), we refer to Ref. 14. We denote
by P the solution set of the (VEP).

It is well-known that the (VEP) is closely related to the following prob-
lem: find x0∈K such that

f (y, x0) �H0, for all y∈K. (2)

This problem can be termed as the dual vector equilibrium problem
(DVEP), Ref. 12. We denote by D the solution set of the (DVEP).

Now, we mention some definitions and results which will be used in
the sequel.

Definition 2.1. See Ref. 11. A bifunction f: KBK→Y is called:

(a) monotone if, for all x, y∈K,

f (x, y)Cf (y, x)⁄0;

(b) pseudomonotone if, for all x, y∈K,

f (x, y)H0 implies f (y, x)F0.

Definition 2.2. See Ref. 11. A function h: K→Y is called:

(i) quasiconvex if, for all α ∈Y, the set

L(α )G{x∈K: h(x)⁄α}

is convex;
(ii) explicitly quasiconvex if h is quasiconvex and, for all x, y∈K such

that h(x)Fh(y), we have

h(zt)Fh(y), for all ztGtxC(1At)y and t∈(0, 1);

(iii) hemicontinuous if, for any x, y∈K and t∈[0, 1], the mapping
t>h(txC(1At)y) is continuous at 0+.
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We note that, if h is quasiconvex, then the set {x∈K: h(x)Fα} is also
convex.

From Proposition 3.1 in Ref. 11, we obtain the following relationship
between the solution sets of problems (VEP) and (DVEP).

Proposition 2.1. Let K be a nonempty convex subset of a Hausdorff
topological vector space X, and let f: KBK→Y be a bifunction such that
f (x, x)G0 for all x∈K. Then,

(i) Problem (1) implies problem (2) if f is pseudomonotone.
(ii) Problem (2) implies problem (1) if f (x, · ) is explicitly quasiconvex

and f ( · , y) is hemicontinuous for all x, y∈K.

We denote

f (K, y)G*
x∈K

f (x, y), f (x, K )G*
y∈K

f (x, y).

If A is a nonempty subset of Y, then we set

max
C

A_{a∈A � there exists no a′∈A such that a′≠a and a′¤a},

min
C

A_{a∈A � there exists no a′∈A such that a′≠a and a′⁄a},

wAmax
C

A_{a∈A � there exists no a′∈A such that a′Ha},

wAmin
C

A_{a∈A � there exists no a′∈A such that a′Fa}.

Note, for example, that it is possible that maxC AG∅.

3. Characterizations of Solutions for (VEP)

In this section, we aim to derive some characterizations of solutions for
the vector equilibrium problem (VEP) defined by (1). We introduce also the
vector optimization problem formulation of set-valued mappings for the
vector equilibrium problem in the sense that there exists a set-valued map
F: K→2Y, depending on the data of the (VEP) but not on its solution set,
such that the solution set of the (VEP) coincides with the solution set of the
vector optimization problem (VOP), which is defined with the help of the
map F. For instance, we can define the following (VOP):

wAmin
x∈K

F(x); (3)



JOTA: VOL. 113, NO. 3, JUNE 2002 439

that is, to find all x0∈K for which there exists y0∈F (x0) such that

y0 ∈wAmin
C

F(K );

i.e.,

F(x0)∩wAmin
C

F(K)≠∅,

where

F(K )G*
x∈K

F(x).

For the existence of solutions and other theoretical work on the (VOP) (3),
we refer to Refs. 18–22 and references therein.

In order to formulate our first characterization, we define a set-valued
map φ : K→2Y as follows:

φ(x)GwAmin
C

f (x, K ), for all x∈K.

Let

dom(φ )G{x∈K: φ(x)≠∅}.

Lemma 3.1. For each x∈K, we have that

z∈φ (x) implies z �H0. (4)

Proof. For contradiction, assume that there exists z∈φ (x) such that
zH0. Then, there exists y∈K such that

f (x, y)GzH0Gf (x, x),

which is a contradiction, since

f (x, y)∈wAmin
C

f (x, K ). �

We associate to the (VEP) the following (VOP) for set-valued map:

wAmax
x∈K

φ (x); (5)

that is, to find all x0 ∈K for which there exists y0∈φ (x0) such that y0∈
wAmaxC φ(K), i.e.,

φ(x0)∩wAmax
C

φ (K)≠∅,



JOTA: VOL. 113, NO. 3, JUNE 2002440

where

φ(K )G*
x∈K

φ(x).

We denote by Qφ the solution set of problem (5).

Theorem 3.1.

(i) x0∈K is a solution of the (VEP) if and only if 0∈φ(x0).
(ii) P ⊆ Qφ .

Proof. Suppose that x0 solves the (VEP). Then,

f (x0 , y) �⁄0, for all y∈K.

Assume that 0∉φ (x0 ); then, there exists z∈K such that

f (x0 , z)F0,

which is a contradiction.
Conversely, let 0∈φ (x0). Assume that x0 does not solve the (VEP); then,

there exists y∈K such that f (x0 , y)F0. This implies that 0∉φ(x0), a contra-
diction. This proves the first part of the theorem.

Next, let x0 ∈P. Then, 0∈φ (x0) due to part (i). It now follows from (4)
that x0∈Qφ , as desired. �

We remark that the inclusion in Theorem 3.1(ii) can be strict as the
following example shows.

Example 3.1. Let

XGYGR and CG[0,S ).

Let

f (x, y)Gsin(xAy), for all x, y∈R.

Then, for each x∈R, f (x, R)G[−1, 1]. Hence, for each x∈R, φ(x)G{−1}. It
is clear that PG∅ and QφGR.

Let Y be a locally convex space, and let Y* denote the topological dual
space of Y; then, we can define the dual cone

C*_{λ∈Y* �〈λ , y〉¤0, for all y∈Y}

to C. Since int C≠∅ and C≠Y, we have C*≠{0}; besides, C* has a weakly*
compact base; i.e., there exists B ⊆ C*, B is convex, weakly* compact, such
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that 0∉B and C*G*t¤0 tB. We fix such a base and set

σ(u)_max
t∈B

(t, u), for all u∈Y,

(see Ref. 16). Then, for all u∈Y,

uF0 ⇔ σ(u)F0, u⁄0 ⇔ σ(u)⁄0, (6a)

u �F0 ⇔ σ(u)¤0, u �⁄0 ⇔ σ(u)H0. (6b)

In order to formulate our second characterization, we define the set-
valued maps Z: K→2K and ϕ: K→2Y as follows:

Z(x)_{y∈K �σ( f (x, y))⁄σ( f (x, z)), for all z∈K},

ϕ(x)_f (x, Z(x)).

Lemma 3.2. For each x∈K, we have that

z∈ϕ(x) implies z⁄0. (7)

Proof. By definition, if z∈ϕ(x), then there exists y∈K such that zG
f (x, y). Since y∈Z(x), we have

σ( f (x, y))⁄σ( f (x, x))G0.

From (6), it now follows that

zGf (x, y)⁄0. �

We now define the following (VOP) for set-valued map:

max
x∈K

ϕ(x); (8)

that is, to find all x0∈K for which there exists y0 ∈ϕ(x0) such that y0∈
maxC ϕ(K ), i.e.,

ϕ(x0)∩max
C

ϕ(K)≠∅.

We denote by Qϕ the solution set of problem (8).

Theorem 3.2.

(i) x0∈K is a solution of the (VEP) if and only if 0∈ϕ(x0).
(ii) If the solution set of the (VEP) is nonempty, then PGQϕ .

Proof. Suppose that x0 solves the (VEP). Then,

f (x0 , y) �⁄0, for all y∈K,
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or due to (6),

σ( f (x0 , y))¤0, for all y∈K.

Therefore,

σ( f (x0 , x0))G0⁄σ( f (x0 , y)), for all y∈K,

and we conclude that x0∈Z(x0 ). It follows that

0Gf (x0 , x0)∈ϕ(x0).

Conversely, let 0∈ϕ(x0). Assume that x0 does not solve the VEP; then, there
exists y∈K such that f (x0 , y)F0. Now, (6) gives

σ( f (x0 , y))F0

and

σ( f (x0 , y′))⁄σ( f (x0 , y))F0, for all y′∈Z(x0).

Again, from (6), we have

f (x0 , y′ )F0, for all y′∈Z(x0);

i.e. 0∉ϕ(x0), a contradiction. This proves part (i) of the theorem.
Next, let P≠∅. Take any x0 ∈P; then,

0Gf (x0 , x0)∈ϕ(x0),

due to (i). From (7), we have that, for each x∈K and for all z∈ϕ(x),

z⁄ f (x0 , x0)G0.

If there exists z′∈ϕ(x), z′≠0 such that z′¤0, then we must have

z′¤0 and z′⁄0;

that is,

0≠z′∈C∩ (−C).

This contradicts that C is a pointed one. Therefore, x0 ∈Qϕ .
Conversely, take any x0 ∈Qϕ . By the definition, there exists y0 ∈ϕ(x0)

such that y0∈maxC ϕ(K). From (7), it follows that y0⁄0. For contradiction,
assume that 0∉ϕ(x0); then, y0≠0. Since P≠∅, there exists x*∈P, but 0∈
ϕ(x*) due to (i). Therefore, there exists 0∈ϕ(K), 0≠y0 , and y0⁄0. This
contradicts that y0 ∈maxC ϕ(K ). Thus, assertion (ii) is also true and the
proof is completed. �

We remark that, in Theorem 3.2(ii), it is possible that P is empty and
Qϕ is not empty by again considering Example 3.1.
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4. Characterizations of Solutions for (DVEP)

In this section, we shall derive some characterizations of solutions for
the dual vector equilibrium problem (DVEP) defined by (2). Again, we will
introduce some suitable vector optimization problem formulations of set-
valued maps for the dual vector equilibrium problem.

We define first a set-valued map φ*: K→2Y by means of

φ*(x)GwAmax
C

f (K, x), for all x∈K, (9)

and we associate to the (VEP) the following (VOP):

wAmin
x∈K

φ*(x); (10)

that is, to find all x0∈K for which there exists y0∈φ*(x0) such that

y0 ∈wAmin
C

φ*(K ),

i.e.,

φ*(x0)∩wAmin
C

φ*(K )≠∅.

The set-value map (9) generalizes the gap function, introduced and
studied in Ref. 7 for weak vector variational inequalities. We denote by
Qφ* the solution set of problem (10). Note that, in the sense of vector optimi-
zation for set-valued maps, the (VOP) (5) and (10) are dual to each other;
see Ref. 20 and references therein. Therefore, the (VOP) (10) is closely
related to the dual formulation (2) of the (VEP). Similar to the proof of
Theorem 3.1, we can get the following characterization of solution for the
dual vector equilibrium problem.

Proposition 4.1.

(i) x0∈K is a solution of the (DVEP) if and only if 0∈φ*Q(x0).
(ii) D ⊆ Qφ* .

Combining Propositions 2.1 and 4.1, we can obtain some existence
results for the vector equilibrium problem. Let us first recall the following
defintion.

Definition 4.1. A bifunction f: KBK→Y is called bipseudomonotone
if f and −f are pseudomonotone.

Example 4.1. Let

XGYGR2, KG[0, 1]B[0, 1], CGR 2
+ .
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We define two bifunctions f1 , f2: KBK→Y by

f1(x, y)G(x1Ay1 , x
2
2Ay2

2),

f2(x, y)G(x2(x1Ay1), y2(x2Ay2)),

where

xG(x1 , x2) and yG(y1 , y2).

Then f1 and f2 are bipseudomonotone. Since

f1(x, y)Cf1(y, x)G0,

for all x, y∈K, f1 is also monotone. But f2 is not monotone, because for xG
(1, 1) and yG(1�2, 1�2), we have

f2(x, y)Cf2(y, x)G(1�4, −1�4) �⁄0.

Now, we can state the following existence results for the vector equilib-
rium problem.

Corollary 4.1. Let K be a nonempty convex subset of a Hausdorff
topological vector space S, and let f: KBK→Y be a bifunction such that
f (x, x)G0, for all x∈K.

(i) If f is pseudomonotone and x0 ∈P, then 0∈φ*(x0).
(ii) If 0∈φ*(x0), x0∈K, and either −f is pseudomonotone, or f (x, ·) is

explicitly quasiconvex and f ( · , y) is hemicontinuous for all x, y∈
K, then x0 ∈P.

(iii) If f is pseudomonotone, then P ⊆ Qφ* .

Corollary 4.2. Let K be a nonempty convex subset of a Hausdorff
topological vector space X, and let f: KBK→Y be a bifunction such that
f (x, x)G0, for all x∈K. Suppose that at least one of the following assump-
tions hold:

(i) f is a bipseudomonotone;
(ii) f is pseudomonotone, f (x, · ) is explicitly quasiconvex, and f ( · , y)

is hemicontinuous for all x, y∈K.

Then, x0∈K solves the (VEP) (1) if and only if 0∈φ*(x0).

By analogy with the second characterization from Section 3, we can
define the following characterization of solution for the dual vector equilib-
rium problem. We also present another vector optimization problem (VOP),
which guarantees for the solution sets of the (VEP) and (VOP) to coincide.
From now on, we suppose that Y is a locally convex Hausdorff topological
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vector space. We define the set-valued maps Z*: K→2K and ϕ*: K→2Y as
follows:

Z*(x)_{y∈K �σ*( f ( y, x))¤σ*( f (z, x)), for all z∈K},

ϕ*(x)_ f (Z*(x), x),

where

σ*(y)_min
t∈B

(t, y), for all y∈Y,

B is a base for C*. Then (see e.g., Ref. 16), for all u∈Y, we have the follow-
ing results (cf. (6)):

uH0 ⇔ σ*(u)H0, u¤0 ⇔ σ*(u)¤0,

u �H0 ⇔ σ*(u)⁄0, u �¤0 ⇔ σ*(u)F0.

We now define the following (VOP) for set-valued map:

min
x∈K

ϕ*(x); (11)

that is, to find all x0 ∈K for which there exists y0 ∈ϕ*(x0) such that y0∈
minC ϕ*(K ), i.e.,

ϕ*(x0) ∩ min
C

ϕ*(K )≠∅.

We denote by Qϕ* the solution set of problem (11).

Proposition 4.2.

(i) x0∈K is a solution of the (DVEP) if and only if 0∈ϕ*(x0).
(ii) If the solution set of the (DVEP) is nonempty, then DGQϕ* .

Combining Propositions 2.1 and 4.2, we obtain the following chracter-
ization of solution for the (VEP).

Corollary 4.3. Let all the assumptions of Corollary 4.2 hold. Then:

(i) x0∈K is a solution of the (VEP) if and only if 0∈ϕ*(x0).
(ii) If the solution set of the (VEP) is nonempty, then PGQϕ* .
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