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System of Vector Equilibrium Problems
and Its Applications1

Q. H. ANSARI,2 S. SCHAIBLE,3 AND J. C. YAO
4

Abstract. In this paper, we introduce a system of vector equilibrium
problems and prove the existence of a solution. As an application, we
derive some existence results for the system of vector variational
inequalities. We also establish some existence results for the system of
vector optimization problems, which includes the Nash equilibrium
problem as a special case.
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1. Introduction and Preliminaries

In 1980, Giannessi (Ref. 1) extended classical variational inequalities
to the case of vector-valued functions. Meanwhile, vector variational
inequalities have been researched quite extensively; for example, see Ref. 2
and references therein. Inspired by the study of vector variational inequali-
ties, more general equilibrium problems (Refs. 3–4) have been extended to
the case of vector-valued bifunctions, known as vector equilibrium prob-
lems; see for example Refs. 2 and 5–13.

In this paper, we introduce the system of vector equilibrium problems,
that is, a family of equilibrium problems with vector-valued bifunctions
defined on a product set, and we prove the existence of solutions for such
problems. A special case of a system of vector equilibrium problems, a
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system of (scalar) variational inequalities, was considered earlier by Pang
(Ref. 14). He showed that the traffic equilibrium problem, the spatial equi-
librium problem, the Nash equilibrium problem, and the general equilib-
rium programming problem can be modeled as a system of variational
inequalities. Later, this model was studied also by Cohen and Chaplais (Ref.
15) and by Bianchi (Ref. 16). Existence results were derived in Ref. 16
assuming pseudomonotonicity extended to product sets.

In the first part of the present paper, we establish the existence of a
solution for the considerably more general problem of a system of vector
equilibrium problems (Section 2). Then, in the second part (Section 3), we
specialize our results to a system of vector variational inequalities and to a
system of vector optimization problems. In the latter case, we obtain also
existence results for the Nash equilibrium problem with vector-valued func-
tions, since a solution of a system of vector optimization problems is also a
solution of the Nash equilibrium problem.

Let I be an index set; for each i ∈ I, let Xi be a Hausdorff topological
vector space. Consider a family of nonempty convex subsets {Ki}i ∈ I with Ki
in Xi . Let

KG∏
i ∈ I
Ki and XG∏

i ∈ I
Xi .

Let Y be a Hausdorff topological vector space, and let C be a nonempty
pointed closed convex cone in Y with intC≠∅ , where intC denotes the
interior of C. The cone C induces a partial ordering � on Y defined by x�y
if and only if yAx ∈ C. Let { fi}i ∈ I be a family of bifunctions defined on
KBKi with values in Y. We consider the system of vector equilibrium prob-
lems (in short, SVEP), which is to find x̄ ∈ K such that, for each i ∈ I,

(SVEP) fi (x̄, yi ) ∉ AintC, for all yi ∈ Ki .

If the index set I is a singleton, then the (SVEP) reduces to a vector
equilibrium problem studied in Refs. 2 and 5–13, which includes vector
variational inequalities as a special case; see for example Refs. 1–2 and the
references therein.

Let M be a nonempty convex subset of a topological vector space Z.
The function Φ:M→Y is called C-quasiconcave (Refs. 17–18) if, for all
α ∈ Y, the set {x ∈ M: Φ(x)Aα ∈ C} is convex. It is called C-quasiconvex if
−Φ is C-quasiconcave.

A function ξ :YA� is said to be monotonically increasing [respectively,
strictly monotonically increasing] with respect to C (Ref. 17) if ξ (a)¤ξ (b),
for all aAb ∈ C [respectively, ξ (a)Hξ (b), for all aAb ∈ intC ].
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For any fixed a ∈ Y and e ∈ intC, the set

ζ e,a( y)G{t ∈ �: y ∈ aCteCC}

is nonempty closed and bounded for each y ∈ Y; see for example Refs. 17
and 19. Hence, we can define real-valued functions ξe,a and ξ ′e,a:Y→� by

ξe,a ( y)Gmax{t ∈ �: y ∈ aCteCC},

ξ ′e,a ( y)Gmin{t ∈ �: y ∈ aCteAC},

for all y ∈ Y. These functions have the following properties.

Lemma 1.1. See Ref. 17.

(i) The functions ξe,a and ξ ′e,a are continuous and strictly monoton-
ically increasing with respect to C.

(ii) A function p:K→Y is C-quasiconcave [respectively, C-quasicon-
vex] if and only if the composite mapping ξe,a ° p:K→� is �+-
quasiconcave [respectively, ξ ′e,a ° p:K→� is �+-quasiconvex],
where �+G{x ∈ �: x¤0}.

We need the following result to prove the main result of this paper.

Lemma 1.2. See Ref. 20. Let X and Y be Hausdorff topological vec-
tor spaces; and let Y be compact. Let g be a real-valued function defined
on XBY such that:

(i) g is lower semicontinuous on XBY;
(ii) for each fixed y ∈ Y, the function x > g(x, y) is upper semicontinu-

ous on X.

Then, the function Ψ:X→� defined by

Ψ(x)Gmin
y ∈ Y

g(x, y), for each x ∈ X,

is continuous on X.

Let Z be a topological vector space, and let F:Z→2Y be a multivalued
map, where 2Y denotes the family of all subsets of Y. The inverse F −1 of F
is the multivalued map from R (F ), the range of F, to Z defined by

z ∈ F −1( y), if and only if y ∈ F (z).

We shall use the following particular form of a fixed-point theorem
given in Ref. 21 to prove the existence of a solution of the (SVEP).
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Theorem 1.1. For each i ∈ I, let Si :K→2Ki be a multivalued map.
Assume that the following conditions hold:

(i) For each i ∈ I and each x ∈ K, Si (x) is nonempty and convex.
(ii) For each i ∈ I,KG ∪ {intK S

−1
i (xi ): xi ∈ Ki}.

(iii) If K is not compact, assume that there exist a nonempty compact
convex subset Bi of Ki for each i ∈ I and a nonempty compact
subset D of K such that, for each x ∈ K \D, there exists ỹi ∈ Bi such
that x ∈ intK S

−1
i ( ỹi ) for each i ∈ I.

Then, there exists x̄ ∈ K such that

x̄ ∈ S(x̄)G∏
i ∈ I
Si (x̄),

that is,

x̄i ∈ Si (x̄), for each i ∈ I,

where x̄i is the projection of x̄ onto Ki .

2. Existence Results

An element of the set

XiG ∏
j ∈ I, j≠ i

Xj

will be represented by xi; therefore, x ∈ X can be written as

xG(xi, xi ) ∈ XiBXi .

Theorem 2.1. For each i ∈ I, let Ki be a nonempty compact convex
subset of Xi , and let fi :KBKi→Y be a bifunction such that fi (x, xi )G0, for
all xG(xi, xi ) ∈ K. Assume that the following conditions are satisfied.

(i) For each i ∈ I and for all x ∈ K, the function yi > fi (x, yi ) is C-
quasiconvex.

(ii) For each i ∈ I, fi is continuous on KBKi .

Then, the solution set of the (SVEP) is nonempty and compact.

Proof. For fixed a ∈ Y and e ∈ intC, we define a real-valued function
ξ :Y→� by

ξ ( y)Gmin{t ∈ �: y ∈ aCteAC},
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for all y ∈ Y. Then, by Lemma 1.1, ξ is strictly monotonically increasing and
continuous, and for each i ∈ I, the function yi > ξ ° fi (x, yi ) is �+-quasicon-
vex. From assumption (ii), we see that, for each i ∈ I, ξ ° fi is continuous on
KBKi .

For each i ∈ I and each niG1, 2, . . . , we define the multivalued map
Si,ni :K→2Ki by

Si,ni (x)G�yi ∈ Ki : ξ ° fi (x, yi )Fmin
zi ∈ Ki

ξ ° fi (x, zi )C1�ni� ,
for all x ∈ K. Then, for each i ∈ I and for all x ∈ K, Si,ni (x) is nonempty
because ξ ° fi is continuous on KBKi and each Ki is compact. Since for each
i ∈ I, the function yi > ξ ° fi (x, yi ) if �+-quasiconvex, Si,ni (x) is convex for
all x ∈ K.

From Lemma 1.2 and assumption (ii), we see that the set

S−1
i,ni (yi )G�x ∈ K: ξ ° fi (x, yi )Fmin

zi ∈ Ki
ξ ° fi (x, zi )C1�ni�

is open in K for each i ∈ I and for all yi ∈ Ki . Since Si,ni(x) is nonempty for
each i ∈ I and for all x ∈ K, we have

KG *
yi ∈ Ki

S−1
i,ni ( yi)G *

yi ∈ Ki
intK S

−1
i,ni ( yi ).

Hence, by Theorem 1.1, there exists x*ni ∈ K such that, for each

x*i,ni ∈ Si,ni (x*ni ), for all niG1, 2, . . . ,

that is,

ξ ° fi (x*ni , x*i,ni)Fmin
zi ∈ Ki

ξ ° fi (x*ni , zi )C1�ni , for all niG1, 2, . . . .

Since for each i ∈ I, Ki is compact, we may assume that x*ni→ x̄, that is

x*i,ni→ x̄i ∈ Ki for each i ∈ I.

Therefore,

lim
ni→S

ξ ° fi (x*ni , x*i,ni)⁄min
zi ∈ Ki

lim
ni→S

ξ ° fi (x*ni , zi ).

Hence, for each i ∈ I,

ξ ° fi (x̄, x̄i )Gmin
zi ∈ Ki

ξ ° fi (x̄, zi ).

Since ξ is strictly monotonically increasing with respect to C, we have

fi (x̄, x̄i )Afi (x̄, zi ) ∉ intC, for all zi ∈ Ki .
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Since for each i ∈ I and for all xG(xi, xi ) ∈ K,

fi (x, xi )G0,

we have that, for each i ∈ I,

fi (x̄, zi ) ∉ AintC, for all zi ∈ Ki .

By (ii), the solution set of the (SVEP) is a closed subset of a compact set K,
and hence it is compact. �

In case Ki is not necessarily compact, we have the following result.

Theorem 2.2. For each i ∈ I, let Ki be a nonempty convex subset of Xi
and let fi :KBKi→Y be a bifunction such that fi (x, xi )G0, for all xG
(xi, xi ) ∈ K. Assume that the following conditions are satisfied:

(i) For each i ∈ I and for all x ∈ K, the function yi > fi (x, yi ) is C-
quasiconvex.

(ii) For each i ∈ I, fi is continuous on each compact convex subset of
KBKi .

(iii) For each i ∈ I, there exists a nonempty compact convex subset Bi
of Ki ; let BG∏i ∈ I Bi ⊂ K such that, for each x ∈ K \B, there exists
ỹi ∈ Bi such that

fi (x, ỹi ) ∈ AintC.

Then, there exists a solution x̄ ∈ B of the (SVEP).

Proof. For each i ∈ I, let {yi1 , . . . , yik} be a finite subset of Ki . Let

QiGco(Bi ∪ {yi1 , . . . , yik}),

where co(M ) denotes the convex hull of M. Then, for each i ∈ I, Qi is com-
pact and convex. By Theorem 2.1, there exists x̄ ∈ QG∏i ∈ I Qi such that, for
each i ∈ I,

fi (x̄, yi ) ∉ AintC, for all yi ∈ Qi .

From assumption (iii), x̄ ∈ B. In particular, we have x̄ ∈ B such that, for each
i ∈ I,

fi (x̄, yik) ∉ AintC, for all k.

Since B is compact and convex, by (ii) we have that, for each i ∈ I and for
all yi ∈ Ki ,

G( yi )G{x ∈ B: fi (x, yi ) ∉ AintC}
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is closed in B. As shown above, every finite subfamily of closed sets G( yi )
has a nonempty intersection. Since B is compact, for each i ∈ I,

)
yi ∈ Ki

G( yi )≠∅ .

Thus, there exists x̄ ∈ B such that, for each i ∈ I,

fi (x̄, yi ) ∉ AintC, for all yi ∈ Ki .

This completes the proof. �

Remark 2.1. Let I be a finite index set and, for each i ∈ I, let Xi be a
reflexive Banach space with norm �� · ��i equipped with the weak topology.
Consider a Banach space Y equipped with the norm topology. The norm
on XG∏i ∈ I Xi will be denoted by �� · ��. Then, assumption (iii) in Theorem
2.2 can be replaced by the following condition:

(iii)′ There exists rH0 such that, for all x ∈ K, ��x��Hr, there exists
ỹi ∈ Ki , �� ỹi ��i⁄r, such that

fi (x, ỹi ) ∈ AintC.

Proof. Define

Br
i G{xi ∈ Ki : ��xi ��i⁄r}.

Then, Br
i is a nonempty compact convex subset of Xi . By taking BiGBr

i ,
we obtain the conclusion. �

3. Applications

For each i ∈ I, let ϕi :K→Y be a given function. The system of vector
optimization problems (in short, SVOP) is to find x̄ ∈ K such that, for each
i ∈ I,

(SVOP) ϕi ( y)Aϕi (x̄) ∉ AintC, for all y ∈ K.

We can choose y ∈ K in such a way that yiGx̄ i. Then, we have the Nash
equilibrium problem for vector-valued functions, which is to find x̄ ∈ K such
that, for each i ∈ I,

ϕi (x̄ i, yi )Aϕi (x̄) ∉ AintC, for all yi ∈ Ki .

It is clear that every solution of the (SVOP) is also a solution of the Nash
equilibrium problem for vector-valued functions. But the converse is not
true.
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For each i ∈ I, let Ai :K→L(Xi ,Y ) be a given map, where L(Xi ,Y )
denotes the space of all continuous linear operators from Xi into Y. Then,
we consider the system of vector variational inequalities (in short, SVVI),
which is to find x̄ ∈ K such that, for each i ∈ I,

(SVVI) 〈Ai (x̄), yiAx̄i 〉 ∉ AintC, for all yi ∈ Ki ,

where 〈s, xi 〉 denotes the evaluation of s ∈ L(Xi ,Y ) at xi ∈ Xi .

If YG� and CG�+, then the (SVVI) becomes the system of variational
inequalities studied before in Refs. 14–16 and 21.

In case the index set I is a singleton, the (SVVI) reduces to a vector
variational inequality first considered in Ref. 1; see also Ref. 2 and refer-
ences therein.

In the following, we make use of a result given in Ref. 22.

Lemma 3.1. Let E and Y be topological vector spaces, and let L(E,Y )
be equipped with the uniform convergence topology δ ; see Ref. 22, pp. 79–
81. Then, the bilinear form 〈 · , · 〉 :L(E,Y )BE→Y is continuous on
(L(E,Y ), δ)BE.

Throughout this section, we shall assume that, for each i ∈ I, L(Xi ,Y )
is equipped with the uniform convergence topology.

The following existence results for the (SVVI) can be derived easily
from Theorems 2.1 and 2.2.

Theorem 3.1. For each i ∈ I, let Ki be a nonempty compact convex
subset of Xi ; and let Ai be continuous on K. Then, there exists a solution
x̄ ∈ K of the (SVVI).

Theorem 3.2. For each i ∈ I, let Ki be a nonempty convex subset of Xi ;
and let Ai be continuous on each compact convex subset of K. Assume that,
for each i ∈ I, there exists a nonempty compact convex subset Bi of Ki ; and
let BG∏i ∈ I Bi ⊂ K such that, for each x ∈ K \B, there exists ỹi ∈ Bi such that
〈Ai (x), ỹiAxi 〉 ∈− intC. Then, there exists a solution x̄ ∈ B of the (SVVI).

In case I is a singleton, we have the following result.

Corollary 3.1. Let K be a nonempty convex subset of a Hausdorff
topological vector space E; and let A:K→L(E,Y ) be continuous on each
compact convex subset of K. Assume that there exists a nonempty compact
convex subset B of K such that, for each x ∈ K \B, there exists ỹ ∈ B such
that 〈A(x), ỹAx〉 ∈− intC. Then, there exists x̄ ∈ B such that

〈A(x̄), yAx̄〉 ∉− intC, for all y ∈ K.
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To prove the existence of a solution of the (SVOP), we introduce the
following concept. We call the function φi :K→Y differentiable on Ki if the
set

∂φi (x)G{Ti ∈ L(Xi ,Y ): φi ( y)Aφi (x)�Ti ( yiAxi ), for all y ∈ K}

is a singleton denoted by Dφi (x). When the index set I is a singleton, the
above definition is the same as in Ref. 13.

Proposition 3.1. For each i ∈ I, let ϕi :K→Y be differentiable on Ki .
Then, any solution of the (SVVI) is a solution of the (SVOP) with Ai (x)G
Dϕi (x), for all x ∈ K.

Proof. Suppose that x̄ ∈ K is a solution of the (SVVI), but not a solu-
tion of the (SVOP). Then, for some i ∈ I, there exists a point ŷ ∈ K such that

ϕi ( ŷ)Aϕi (x̄) ∈− intC.

Since ϕi is differentiable on Ki , we have

ϕi ( ŷ)Aϕi (x̄)ADϕi (x̄)( ŷiAx̄i ) ∈ C.

Hence, we have

Dϕi (x̄)( ŷiAx̄i ) ∈− intC,

which contradicts our assumption. This proves the result. �

From Theorems 3.1 and 3.2 and from Proposition 3.1, we have the
following existence results for the (SVOP) and hence for the Nash equilib-
rium problem for vector-valued functions.

Theorem 3.3. For each i ∈ I, let Ki be a nonempty compact convex
subset of Xi ; and let ϕi :K→Y be differentiable on Ki such that Dϕi is
continuous on K. Then, there exists a solution x̄ ∈ K of the (SVOP).

Theorem 3.4. For each i ∈ I, let Ki be a nonempty convex subset of Xi ;
and let ϕi :K→Y be differentiable on Ki such that Dϕi is continuous on K.
Assume that, for each i ∈ I, there exists a nonempty compact convex subset
Bi of Ki ,; and let BG∏i ∈ I Bi ⊂ K such that, for each x ∈ K \B, there exists
ỹi ∈ Bi such that 〈Dϕi (x), ỹiAxi 〉 ∈− intC. Then, there exists a solution x̄ ∈ B
of the (SVOP).
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6. ANSARI, Q. H., OETTLI, W., and SCHLÄGER, D., A Generalization of Vectorial
Equilibria, Mathematical Methods of Operations Research, Vol. 46, pp. 147–
152, 1997.

7. BIANCHI, M., HADJISAVVAS, N., and SCHAIBLE, S., Vector Equilibrium Prob-
lems with Generalized Monotone Bifunctions, Journal of Optimization Theory
and Applications, Vol. 92, pp. 527–542, 1997.

8. HADJISAVVAS, N., and SCHAIBLE, S., From Scalar to Vector Equilibrium Prob-
lems in the Quasimonotone Case, Journal of Optimization Theory and Appli-
cations, Vol. 96, pp. 297–309, 1998.

9. HADJISAVVAS, N., and SCHAIBLE, S., Quasimonotonicity and Pseudomonotonic-
ity in Variational Inequalities and Equilibrium Problems, Generalized Convexity,
Generalized Monotonicity: Recent Results, Edited by J. P. Crouzeix, J. E.
Martinez-Legaz, and M. Volle, Kluwer Academic Publishers, Dordrecht, The
Netherlands, pp. 257–275, 1998.

10. LEE, G. M., KIM, D. S., and LEE, B. S., On Noncooperatiûe Vector Equilibrium,
Indian Journal of Pure and Applied Mathematics, Vol. 27, pp. 735–739, 1996.

11. OETTLI, W., A Remark on Vector-Valued Equilibria and Generalized Monotonic-
ity, Acta Mathematica Vietnamica, Vol. 22, pp. 213–221, 1997.

12. SCHAIBLE, S., From Generalized Conûexity to Generalized Monotonicity, Oper-
ations Research and Its Applications, Proceedings of the 2nd International Sym-
posium, ISORA’96, Guilin, PRC; Edited by D. Z. Du, X. S. Zhang, and K.
Cheng, Beijing World Publishing Corporation, Beijing, PRC, pp. 134–143, 1996.

13. TAN, N. X., and TINH, P. N., On the Existence of Equilibrium Points of Vector
Functions, Numerical Functional Analysis and Optimization, Vol. 19, pp. 141–
156, 1998.

14. PANG, J. S., Asymmetric Variational Inequality Problems oûer Product Sets:
Applications and Iteratiûe Methods, Mathematical Programming, Vol. 31,
pp. 206–219, 1985.



JOTA: VOL. 107, NO. 3, DECEMBER 2000 557

15. COHEN, G., and CHAPLAIS, F., Nested Monotony for Variational Inequalities
oûer a Product of Spaces and Conûergence of Iteratiûe Algorithms, Journal of
Optimization Theory and Applications, Vol. 59, pp. 360–390, 1988.

16. BIANCHI, M., Pseudo P-Monotone Operators and Variational Inequalities,
Report 6, Istituto di Econometria e Matematica per le Decisioni Economiche,
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