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1. INTRODUCTION AND PRELIMINARIES

Let X be a real locally convex space with its dual X∗ and K be a nonempty convex subset of X.
Let ϕ : K ×K −→ R be a bifunction and f ∈ X∗. Gwinner [1] considered the problem of finding
u0 in K such that

ϕ(u0, v) ≥ 〈f, v − u0〉, for all v in K, (1)

where 〈·, ·〉 denotes the pairing between X∗ and X. Equation (1) is called the nonlinear inequality.
Such types of nonlinear inequalities model some equilibrium problems drawn from opera-

tions research, as well as some unilateral boundary value problems stemming from mathematical
physics. The existence theory and abstract stability analysis of (1) have been investigated by
Gwinner [1] in the setting of reflexive Banach spaces.

When ϕ(u, v) = 〈T (u), v − u〉, where A : K −→ X∗ is a map, (1) reduces to the classical
variational inequality problem introduced by Lions and Stampacchia [2], that is, to find a u0 in K
such that

〈T (u0), v − u0〉 ≥ 〈f, v − u0〉, for all v in K. (2)

Even more specifically, when ϕ(u, v) = 〈T (u), v − u〉 and f ≡ 0, (1) becomes the original
variational inequality problem (see, e.g., [3,4]), that is, to find a u0 in K such that

〈T (u0), v − u0〉 ≥ 0, for all v in K. (3)

Many authors have studied this type of problem in the context of reflexive Banach spaces
(see, for example, [3,5–7]). Watson [8] established the existence of solutions to problem (3) in
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the setting of not necessarily reflexive Banach spaces and pseudomonotone and hemicontinuous
maps. His assumptions are weaker than those needed in [9].

When ϕ(u, v) = 〈T (u), η(v, u)〉, and f ≡ 0, where η : K ×K −→ X is a map, (1) is equivalent
to find a u0 in K such that

〈T (u0), η(v, u0)〉 ≥ 0, for all v in K. (4)

Inequality (4) is known as a variational-like inequality which has many applications in operations
research, optimization, and mathematical programming. For further details, we refer to [10–13].

In the case f ≡ 0 and ϕ(u, u) = 0, for all u in K, (1) reduces to the equilibrium problem
considered in [14–16], that is, to find a u0 in K such that

ϕ(u0, v) ≥ 0, for all v in K. (5)

Apparently, our nonlinear inequality (1) contains all above variational inequalities and equilib-
rium problems as special cases.

The main object of this paper is to establish an existence result for the nonlinear inequality (1)
for general maps without any pseudomonotone assumption. We shall employ Fan-Browder [17,18]
type fixed-point theorems due to [19]. As a consequence of our result, we shall derive some
existence results for the variational inequality (3) and the variational-like inequality (4) without
any kind of monotonicity assumption.

The following fixed-point theorem will be used in this paper. We denote by 2Y the family of
all nonempty subsets of a set Y .

Theorem 1. (See [19].) Let K be a nonempty convex subset of a Hausdorff topological vector

space X. Let Q : K −→ 2K be a multifunction such that we have the following.

(a) For each x in K, Q(x) is a nonempty convex subset of K.

(b) For each y in K, Q−1(y) contains relatively open subset Oy of K (Oy may be empty for

some y in K) such that
⋃
y∈K Oy = K.

(c) K contains a nonempty subset D0 which is contained in a compact convex subset D1

of K such that the set D =
⋂
x∈D0

Ocx is either empty or compact, where Ocx denotes the

complements of Ox in K.

Then there exists a point x0 in K such that x0 ∈ Q(x0).

2. MAIN RESULTS

We now prove the main result of this paper.

Theorem 2. Let K be a nonempty convex subset of a Hausdorff topological vector space X

(over the real field). Let f be a nonzero continuous linear functional on X. Let ϕ : K ×K −→ R

be a bifunction vanishing on the diagonal, i.e., ϕ(u, u) = 0, for all u in K, and satisfying the

following conditions.

1. ϕ is convex in the second variable.

2. lim infu→u∗ ϕ(u, v) ≤ ϕ(u∗, v), for all v in K whenever u→ u∗ in K.

3. There is a compact convex subset D1 of K such that for each u in K \D1, there is a v in

D1 with

ϕ(u, v) < 〈f, v − u〉.

Then the nonlinear inequality (1) has a solution in K.

Proof. We define A(v) = {u ∈ K : ϕ(u, v) ≥ 〈f, v − u〉} for each v in K. Then the solution set
of (1) is S =

⋂
v∈K A(v). We note that for each v in K, A(v) is closed. Indeed, let {uλ}λ∈Λ be
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a net in A(v) such that uλ −→ u in K. Then for all f in X∗, we have 〈f, uλ − v〉 −→ 〈f, u− v〉.
Since uλ ∈ A(v) and lim infuλ→u ϕ(uλ, v) ≤ ϕ(u, v), for all v in K, we have

ϕ(u, v) ≥ lim inf
uλ→u

ϕ(uλ, v) ≥ lim inf
uλ→u

〈f, uλ − v〉 = 〈f, u− v〉.

Hence, u ∈ A(v). So for all v in K, A(v) is closed.

Now we shall prove that the solution set S is nonempty. Assume contrary that S = ∅. Then
for each u in K, the set

B(u) = {v ∈ K : u /∈ A(v)} = {v ∈ K : ϕ(u, v) < 〈f, v − u〉} 6= ∅.

Since ϕ is convex in the second variable, we have for each u in K, B(u) is convex. Thus,
B : K −→ 2K defines a multifunction such that for each u in K, B(u) is nonempty and convex.
Now for each v in K, the set

B−1(v) = {u ∈ K : v ∈ B(u)}
= {u ∈ K : ϕ(u, v) < 〈f, v − u〉}
= {u ∈ K : ϕ(u, v) ≥ 〈f, v − u〉}c

= [A(v)]c

= Ov

is open in K. We claim that
⋃
v∈K Ov =

⋃
v∈K B

−1(v) = K. To see this, let u ∈ K. As B(u) 6= ∅,
we can choose a v from B(u). Hence, u ∈ B−1(v) = Ov.

From the last condition of the theorem, for each u in K \D1, there is a v in D1 with ϕ(u, v) <
〈f, v − u〉, that is, u /∈ A(v). This implies that D =

⋂
v∈D1

Ocv =
⋂
v∈D1

A(v) ⊂ D1. Since for
each v in K, A(v) is closed, D is a closed subset of the compact set D1, and hence, D is compact.
Thus, the multifunction B : K −→ 2K satisfies all the conditions of Theorem 1, so there exists
a point u0 in K such that u0 ∈ B(u0), that is, 0 = ϕ(u0, u0) < 〈f, u0 − u0〉 = 0, which is a
contradiction. Hence, the solution set S is nonempty. Therefore, the nonlinear inequality (1) has
a solution in K.

In case K is compact, the last condition in Theorem 2 is automatically satisfied (in particular,
X is a Banach space), since we can set D1 = K. Meanwhile, if a Hausdorff locally convex space X
is barreled, then every weak* closed and bounded subset K of X∗ is weak* compact (see, for
example, [20, p. 141]).

Corollary 1. Let X be a Hausdorff locally convex space with dual X∗. Let K be a weak*

compact convex subset of X∗ and f ∈ X. Let ϕ : K ×K −→ R be a bifunction vanishing on the

diagonal, convex in the second variable, and satisfying the condition that lim infu→u∗ ϕ(u, v) ≤
ϕ(u∗, v), for all v ∈ K, whenever u→ u∗ in K. Then the nonlinear inequality (1) has a solution

in K.

Corollary 2. Let K be a weak* compact convex subset of the dual space X∗ of a Hausdorff

locally convex space X. Let η : K ×K −→ X∗ be a bifunction vanishing on the diagonal. Let T

be a map from K into X such that h(v) := 〈η(v, u), T (u)〉 is convex in v, for each fixed u in K,

and lim infu→u∗〈η(v, u), T (u)〉 ≤ 〈η(v, u∗), T (u∗)〉 for each v in K, whenever u→ u∗ in the weak∗

topology of K. Then the variational-like inequality (4) has a solution in K.

Corollary 3. Let K be a closed convex subset of the dual space X∗ of a Hausdorff locally

convex barreled space X. Let T be a map from K into X such that lim infu→u∗〈v − u, T (u)〉 ≤
〈v − u∗, T (u∗)〉, for each v in K, whenever u→ u∗ in the weak∗ topology of K. Further assume

that there is a compact subset D of K such that for each u in K \D, there is a v in D such that

〈v − u, T (u)〉 < 0. Then the variational inequality problem (3) has a solution in K.
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Proof. We note that the convex hull of a totally bounded subset of any locally convex space is
totally bounded as well. On the other hand, the dual space X∗ of the Hausdorff locally convex
barreled space X is quasi-complete in its weak* topology, that is, closed and bounded subsets of
X∗ are complete (in fact, weak* compact). As a result, the convex hull D1 of the weak* compact
subset D of X∗ is still weak* compact. Consequently, Theorem 2 applies.

Corollary 4. Let X be a Hausdorff locally convex space with dual X∗. Let T be a map from

X∗ into X such that we have the following.

1. lim infu→u∗〈v − u, T (u)〉 ≤ 〈v − u∗, T (u∗)〉, for each v in X∗, whenever u → u∗ in the

weak∗ topology of X∗.
2. There exists a weak∗ compact convex subset D1 of X∗ such that for each u not in D1

there is a v in D1 with 〈v − u, T (u)〉 < 0.

Then T has a zero u0 in X∗, i.e. T (u0) = 0. In case X is barreled, the convexity assumption on

D1 can be dropped.
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