4.1.2 Homogeneous Equations

Example:

1) $2e^{x}y'' + (2\sin x)y'' - 4x^{2}y' - 5y = 3$ linear, 3^{rd} order non-homogeneous DE 2) $xy^{(5)} + 4y^{(4)} + xy''' = 0$ linear, 5^{th} order homogeneous DE

Derivatives as Differential Operators: The symbol D defined as D = d / dx is called a *differential operator*. In this notation, the first, second, third and nth order derivatives are defined as:

D = d/dx, $D^2 = d^2/dx^2$,...., $D^n = d^n/dx^n$

Differential Operator form of nth order homogeneous

<u>ODE</u>: In this notation, the nth order homogeneous ODE can be written as $a_n(x)D^n y + a_{n-1}(x)D^{n-1}y + \dots + a_1(x)Dy + a_0(x)y = 0$ or $\begin{bmatrix} a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_1(x)D + a_0(x) \end{bmatrix} y = 0$

Define $L = a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_1(x)D + a_0(x)$ so that the homogeneous ODE becomes

Ly = 0

Facts about D and L

The operators *D* and *L* are linear, that is, $D(\alpha y_1 + \beta y_2) = \alpha D(y_1) + \beta D(y_2)$ and $L(\alpha y_1 + \beta y_2) = \alpha L(y_1) + \beta L(y_2)$ **Example**: Homogeneous ODEs in terms of differential operators:

o
$$y'' + 2y' + y = 0 \Rightarrow D^2 y + 2Dy + y = 0 \Rightarrow (D^2 + 2D + 1)y = 0$$

 $\circ y' + xy = 0 \implies Dy + xy = 0 \implies (D + x)y = 0$

Facts about solution

- Let Ly = 0 be an nth order homogeneous ODE.
- If $y_1(x), y_2(x), \dots y_n(x)$ are *n* solutions ODE on a given interval, then the linear combination of these solutions given by Superposition Principle

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) = \sum_{i=1}^n c_i y_i(x).$$

is also a solution of ODE.

- If y (x) is a solution of ODE, then cy (x) is also a solution of ODE.
- A homogeneous linear ODE always possesses the trivial solution
 y = 0.

Example: The homogeneous linear ODE $D^2 y + y = 0$ has two solutions given by $y_1 = \cos x$ and $y_2 = \cos x$. Then by superposition principle $y = \alpha \cos x + \beta \sin x$ is also a solution of ODE.

Linearly Independent Solutions: A set of solutions

 $y_1(x), y_2(x), \dots, y_n(x)$ is called *linearly independent* if the equation

$$c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) = 0$$

has only solution $c_1 = 0, c_2 = 0, \dots, c_n = 0$.

Otherwise $y_1(x), y_2(x), \dots, y_n(x)$ are linearly dependent.

Important Facts

A set of two functions $y_1(x)$ and $y_2(x)$ is linearly independent when neither function is a constant multiple of the other on the interval.

For example, the set of functions $y_1(x) = \sin 2x$ and $y_2(x) = \sin x \cos x$ is linearly dependent on $(-\infty, \infty)$ because $y_1(x)$ is a constant multiple of $y_2(x)$ (Recall $\sin 2x = 2\sin x \cos x$).

On the other hand, the set of functions $y_1(x) = x$ and $y_2(x) = |x|$ is linearly independent on $(-\infty, \infty)$ because neither functions is a constant multiple of the other on the interval.

Special Trick to check linear independence (More practical)

Definition: The Wronskian of functions $y_1(x), y_2(x), \dots, y_n(x)$ is

defined as

$$W(y_1, y_2, \cdots, y_n) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)} & y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

The set of solutions $y_1(x), y_2(x), \dots, y_n(x)$ of n^{th} order homogeneous linear differential equation is (a) *linearly independent* on interval $I \Leftrightarrow$ the Wronskian $W(y_1, y_2, \dots, y_n) \neq 0$ for some point $x_0 \in I$. (b) *linearly dependent* on interval $I \Leftrightarrow$ the Wronskian $W(y_1, y_2, \dots, y_n) = 0$ for some point $x_0 \in I$.

A linear independent solution of an ODE is called a *fundamental* set of solutions.

<u>General Solution</u>: Let Ly = 0 be an nth order homogeneous ODE. If $y_1(x), y_2(x), \dots y_n(x)$ are *n* linearly independent solutions of the ODE, then the linear combination of these solutions given by

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) = \sum_{i=1}^n c_i y_i(x).$$

is called the *general solution* of the ODE.

Question 17/138: Determine whether

 $\overline{f_1(x)} = 5$, $f_2(x) = \cos^2 x$, $f_3(x) = \sin^2 x$ is linearly independent on the interval $(-\infty, \infty)$.

Question 20/138: Determine whether

 $\overline{f_1(x)} = 2 + x$, $\overline{f_2}(x) = 2 + |x|$ is linearly independent on the interval $(-\infty,\infty)$.

Question 29/138: Verify that x, x^{-2} , $x^{-2} \ln x$ form a fundamental set of solutions of $x^{3}y'' + 6x^{2}y'' + 4xy' - 4y = 0$ on $(-\infty, \infty)$.