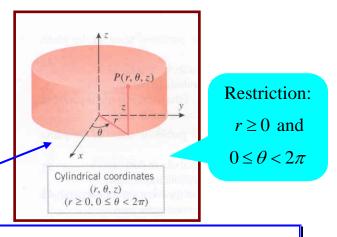

12.7 Cylindrical and Spherical Coordinates

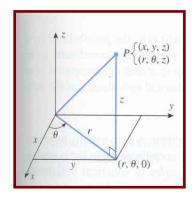
- In 2-dimensions, we learnt polar coordinates which gave an easier description of some curves.
- Here, we introduce two coordinate systems in 3-dimensions,
 known as cylindrical coordinate system and spherical coordinate
 system which give easier description of some surfaces.


In 2-space, every point can be represented by two ways: one is in rectangular coordinate system and other is in polar coordinate system. In 3-space each point can be represented by three ways:

- (i) rectangular coordinates
- (ii) cylindrical coordinates and
- (iii) spherical coordinates.

What are cylindrical coordinates?

A point P in 3-space represented by coordinates (r, θ, z) , where r, θ and z are as shown in the figure


Relation between cylindrical & rectangular coordinates

• Cylindrical to rectangular: $(r, \theta, z) \rightarrow (x, y, z)$

$$x = r\cos\theta$$
, $y = r\sin\theta$, $z = z$

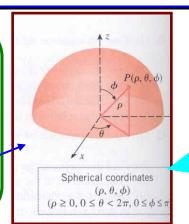
• Rectangular to cylindrical: $(x, y, z) \rightarrow (r, \theta, z)$

$$r = \sqrt{x^2 + y^2}$$
, $\tan \theta = \frac{y}{x}$, $z = z$

Question 10/843: Convert the rectangular coordinates (3,3,-2) to the cylindrical coordinates.

Question 4/843: Plot the point whose cylindrical coordinates are $(1, \frac{3\pi}{2}, 2)$ and

then find the rectangular coordinates of the point.


What are spherical coordinates?

A point P in 3-space represented by coordinates (ρ, θ, ϕ) , where

See class explanation

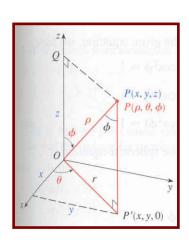
 ρ is distance of P from origin

 θ , ϕ as shown in the figure

Restriction: $\rho \ge 0$ and

 $0 \le \theta < 2\pi$

 $0 \le \phi \le \pi$


Relation between spherical & rectangular coordinates

• Spherical to rectangular: $(\rho, \theta, \phi) \rightarrow (x, y, z)$

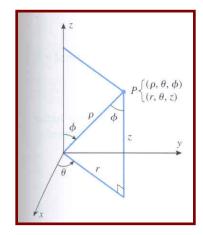
$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

• Rectangular to spherical: $(x, y, z) \rightarrow (\rho, \theta, \phi)$

$$\rho = \sqrt{x^2 + y^2 + z^2}$$
, $\tan \theta = \frac{y}{x}$, $\cos \phi = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$

Question 17/843: Plot the point whose spherical coordinates are $(2, \pi/3, \pi/4)$ and convert into rectangular coordinates.

Question 22/843: Change $(-1,1,\sqrt{6})$ from rectangular to spherical coordinates.


Conversion between cylindrical & spherical coordinates

• Spherical to cylindrical:
$$(\rho, \theta, \phi) \rightarrow (r, \theta, z)$$

$$r = \rho \sin \phi, \quad \theta = \theta, \quad z = \rho \cos \phi$$

• Cylindrical to Spherical: $(r, \theta, z) \rightarrow (\rho, \theta, \phi)$

$$\rho = \sqrt{r^2 + z^2}, \quad \theta = \theta, \quad \tan \phi = \frac{r}{z}$$

Question 40/843: Identify the surface $\rho \sin \phi = 2$.

Question 45/843: Identify the surface $\rho^2(\sin^2\phi\cos^2\theta + \cos^2\phi) = 4$.

Question 62/843: Sketch the solid described by the inequalities

$$-\pi/2 \le \theta \le \pi/2$$
, $0 \le \phi \le \pi/6$, $0 \le \rho \le \sec \phi$.