KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA

STAT 211 (A): BUSINESS STATISTICS I Semester 052 Major Exam #2 Wednesday April 26, 2006

Please **circle** your instructor's name:

Dr. Walid Abu-Dayyeh Dr. Mohammad Omar Mr. Marwan Al-Momani

Name:

ID#

Section:

Serial:

Question No	Full Marks	Marks Obtained
1	10	
2	13	
3	10	
4	15	
5	5	
6	12	
Total	65	

Question .1(4+6=10-Points)

Ahmed followed stock exchanges over the past 50 days. In particular, he recorded price exchanges for two stocks, Al-Kahraba' and Safco. He partially constructed the following table.

		Safco price↓			Total
		Decrease	Unchanged	Increase	Iotui
Al Kabuaha !	Decrease	50	10	60	120
Al-Kahraba ' price →	Unchanged	70	50	80	200
price /	Increase	70	40	70	180
Total		190	100	210	500

With this method, he partially completed the following table to study the behavior of the two stocks.

		Safco↓		Total		
		Decrease	Unchanged	Increase	10141	
	Decrease	0.10	0.02	0.12	0.24	
Al-Kahraba ' →	Unchanged	0.14	0.10	0.16	0.40	
,	Increase	0.14	0.08	0.14	0.36	
Total		0.38	0.20	0.42	1	

With this partially constructed table, find the following:

a. What is the probability that Al-Kahraba' stock price decreases given that Safco price decreases?

 $P(\text{Al-Kahraba' decrease }|\text{Safco Price decrease}) = \frac{P(\text{both decrease})}{P(\text{Safco decrease})} \quad (1pt)$ $= \frac{0.10}{0.38} \qquad (1pt)$ $= 0.263158 \qquad (1pt)$

- b. Let A: Safco increases and B: Al-Kahraba' stock increases.
- I. Are these two events mutually exclusive? Why?

No (1pt). $P(A \cap B) = 0.14$ (by the complement rule) $P(A \cap B) \neq 0$. So, events A and B are <u>NOT mutually exclusive</u> (1pt)

II. Are these two events independent? Why?

$P(A \cap B) = 0.14$	No.(1pt)
<i>P</i> (A)=0.42	P(A)P(B) = 0.42(0.36)
<i>P</i> (B)=0.36	=0.1512
	$P(A \cap B) \neq P(A)P(B)$ (1pt). So, <u>not independent</u> .

III. Find $P(A \cup B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.42 + 0.36 - 0.14$$

$$= 0.64$$
(Probability Addition rule)
(1pt)

Question .2 (1+2+4+2+4=13-Points)

The following distribution of number of daily customer complaints was observed for the past year at Giant Supermarket

X	0	1	2	3	4	5
P(X)	0.2	0.25	0.25	0.1	0.1	0.1
0						

- a. What type of probability distribution is represented above? Discrete Probability Distribution (1pt)
- b. Find the probability that on a given day, there will be <u>at least one</u> customer complaint? $P(x \ge 1) = 1 - P(x = 0)$ = 1 - 0.20 (1nt)

=1-0.20 (1pt) =0.80 (1pt)

c. Find the probability that on a given day, there will be between 2 and 4 complaints (inclusive) given that there is at least one complaint.

$$P(2 \le x \le 4 \mid x \ge 1) = \frac{P(2 \le x \le 4 \text{ and } x \ge 1)}{P(x \ge 1)} \qquad (1pt)$$
$$= \frac{P(x=2) + P(x=3) + P(x=4)}{1 - P(x=0)} \qquad (1pt)$$
$$= \frac{0.25 + 0.10 + 0.10}{0.80} \qquad (1pt)$$
$$= \frac{0.45}{0.80}$$
$$= 0.5625 \qquad (1pt)$$

d. Find the <u>expected number</u> of customer complaints?

$$E[x] = \sum xP(x)$$

= 0(0.20)+1(0.25)+2(0.25)+3(0.10)+4(0.10)+5(0.10) (1pt)
= 0+0.25+0.50+0.30+0.40+0.50
= 1.95 (1pt)

e. Find the standard deviation of customer complaints?

		(1pt) This method				
Х	P(X)	XP(X)	$X^{2}P(X)$	or	$(X-E[X])^2P(X)$	
0	0.20	0.00	0.00		0.760500	
1	0.25	0.25	0.25		0.225625	
2	0.25	0.50	1.00		0.000625	
3	0.10	0.30	0.90		0.110250	
4	0.10	0.40	1.60		0.420250	
5	0.10	0.50	2.50		0.930250	
	1.00	1.95	6.25		2.4475	
			(1pt)		(or 1pt)	
		$\sigma = \sqrt{\sum x^2 P(x) - (E[X])^2}$				
		$=\sqrt{6.25 - (1.95)^2}$				
		$=\sqrt{2.4475}$ (1pt)				
		=1.56445 (1pt)			(1pt)	

Question .3(3+4+3=10-Points)

The life time of batteries manufactured by a factory has an exponential distribution with mean 320 hours. A battery is selected randomly from the product of the factory. Then:

a. Find the probability that the battery will work at most 300 hours.

$$P(x \le 300) = P(0 \le x \le 300)$$

= 1-e^{-\lambda(300)} but what is \lambda? exponential mean = 1/\lambda
320 hr = 1/\lambda. So, \lambda = 1/320 (1 pt)
= 1-e^{-300/320}
= 1-e^{-0.9375} (1pt)
= 0.608394 (1pt)

b. Find the probability that the battery will work more than 400 hours given that it has worked more than 360 hours.

...

$$P(x > 400 | x > 360) = \frac{P(x > 400 \cap x > 360)}{P(x > 360)} \quad (1pt)$$
$$= \frac{1 - (1 - e^{-\lambda 400})}{1 - (1 - e^{-\lambda 360})}$$
$$= \frac{e^{-400/320}}{e^{-360/320}} \quad (1pt)$$
$$= \frac{0.286505}{0.324652}$$
$$= 0.882497 \quad (1pt)$$

c. Find the median of the life time of the battery.

Exponential is skewed so mean is not median

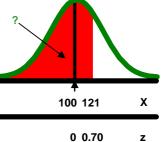
$$P(0 \le x \le median) = 0.50$$
 (1pt)
 $1 - e^{-\lambda(median)} = 0.50$
 $1 - e^{-median/320} = 0.50$
 $e^{-median/320} = 0.50$
 $\frac{-median}{320} = ln(0.50)$
 $Median = -320ln(0.50)$ (1pt)
 $= 221.807$ (1pt)

Question .4(3+4+4+4=15-Points)

At KFUPM the distribution of student after-class daily studying time has been known to follow a *normal distribution* with a *mean* of *100* minutes and a *standard deviation* of *30* minutes.

a. A KFUPM student is randomly selected, what is the probability that he studies less than <u>121</u> minutes?

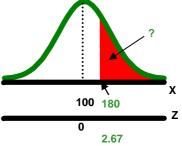
 $P(x < 121) = P(z < \frac{121-100}{30})$ = $P(z < \frac{21}{30})$ = P(z < 0.70) (1pt) = P(z < 0) + P(0 < z < 0.70)= 0.5000 + 0.2580 From the std Normal table (1pt) = 0.7580 (1pt)



b. If students who typically obtain A+ grades in their courses study <u>at least 180</u> minutes daily, what is the percentage of these KFUPM students?

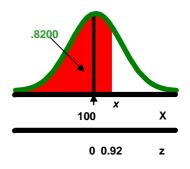
$$P(x > 180) = P(z > \frac{180-100}{30}) \quad (1pt)$$

= $P(z > 2.66667) \approx P(z > 2.67) \quad (1pt)$
= $1 - P(z > 2.67) = 1 - [P(z < 0) + P(0 < z < 2.67)]$
= $1 - (0.5000 + 0.4962)$ From the std Normal table (1pt) =
= $1 - 0.9962$
= $0.0038 \quad (1pt)$
0.038% of KFUPM students



c. Find x where 82% of the students study less than x minutes.

 $P(X < x) = 0.8200 \quad (1pt)$ $P(z < z_0) = 0.8200$ $P(0 < z < z_0) = 0.8200 - 0.5 = 0.3200$ BUT $z_0 = 0.92 \quad \text{from std normal table}$ $z_0 = \frac{x - \mu}{\sigma} = 0.92 \quad (1pt)$ $x = 0.92(30) + 100 \quad (1pt)$ $= 27.6 + 100 = 127.6 \quad (1pt)$



d. If 8 KFUPM students are selected at random, then find the probability that at most one of them will study less than 121 minutes. From part a p = 0.7580

Binomial distribution with n = 8 p = 0.7580 q = 1 - p = 1 - 0.7580 = 0.2420 (1*pt*)

$$P(x \le 1) = P(x = 0) + P(x = 1) \quad (1pt)$$

= $C_0^8 p^0 q^8 + C_1^8 p^1 q^7$
= $(1)(1)(0.2420)^8 + \frac{8!}{1!7!}(0.7580)(0.2420)^7 \quad (1pt)$
= $0.000012 + 8(0.7580)(0.000049)$
= $0.00012 + 0.000295$
= $0.000307 \quad (1pt)$

Question .5 (3+2=5-Points)

The percentage of students who will be admitted to the university after taking an entrance exam is 62%. A random sample of 9 students from those who took the entrance exam is selected. Then:

a. Find the probability that 3 from them will be admitted to the university.

binomial
$$n = 9$$
 $p = 0.62$ $q = 1 - p = 0.38$ (1pt)
 $P(x = 3) = C_3^9 p^3 q^6$
 $= \frac{9!}{3!6!} (0.62)^3 (0.38)^6$ (1pt)
 $= \frac{9 \times 8 \times 7}{3 \times 2} (0.62)^3 (0.38)^6$
 $= 0.060278$ (1pt)

b. Find the expected number of students in the sample who will be admitted to the university.

$$E[x] = np = 9(0.62)$$
 (1pt)
= 5.58 (1pt)

Question .6(*4*+*4*+*4*=*12*-*Points*)

Suppose that on the average there are 3 car accidents weekly at the 4th street. Then:

a. Find the probability that there will be at most 2 car accidents at the 4th street next week.

average =3 cars/weekly =
$$\lambda$$
 and $t = 1$ So, $\lambda t = 3(1) = 3$ (1pt) Poisson
 $P(x \le 2) = P(x = 0) + P(x = 1) + P(x = 2)$ (1pt)
 $= \frac{(\lambda t)^0 e^{-\lambda t}}{0!} + \frac{(\lambda t)^1 e^{-\lambda t}}{1!} + \frac{(\lambda t)^2 e^{-\lambda t}}{2!}$
 $= e^{-3} + 3e^{-3} + \frac{3^2}{2}e^{-3}$ (1pt)
 $= e^{-3} + 3e^{-3} + 4.5e^{-3} = 8.5e^{-3}$

$$= 0.42319$$
 (1*pt*)

b. Find the probability that there will be at least 1 car accident at the 4th street in the coming 2 weeks.

Average=3 cars/weekly =
$$\lambda$$
 and $t = 2$ So, $\lambda t = 3(2) = 6$ (1pt) Poisson
 $P(x \ge 1) = 1 - P(x = 0)$
 $= 1 - (\lambda t)^0 \frac{e^{-\lambda t}}{0!}$ (1pt)
 $= 1 - e^{-6} = 1 - 0.002479$ (1pt)
 $= 0.997521$ (1pt)

c. Find the **mean** and **standard deviation** of the number of car accidents in one year. (<u>Hint</u>: Use one year =53 weeks) t = 1 year = 53 weeks

Mean
$$\mu = E[x] = \lambda t = 5(53)$$
 (1pt)
= 159 (1pt)

std deviation $\sigma = \sqrt{\lambda t}$ = $\sqrt{265}$ (1pt) = 12.6095 (1pt)