Steps to reduce a matrix to Row Echelon Form:

- 1. Find if there is any element = 1 in the first column; if it occurs in row *i* then $R_i \leftrightarrow R_1$. If not, look at any non-zero element in the first column and if it is in row *i* then $R_i \leftrightarrow R_1$.
- 2. If all elements in the first column are zeros, move to the second column and apply step 1 as above.
- 3. If a_{11} now is 1, go to the next step. If $a_{11} \neq 1$ then divide R_1 by a_{11} .
- 4. Try to make all entries under $1 = a_{11}$ to be zeros.
- 5. Ignore R₁ and repeat the same steps for the matrix obtained by deletingR₁ till you have some thing like:

1	*	*	*	*	*]
0	1	*	*	*	*
0	0	0	1	*	*
0	0	0	0	1	*
0	0	0	0	0	1
0	0	0	0	0	0

Now the matrix is in Row Echelon Form.

If the matrix to be reduced to Reduced Row Echelon Form then

6. In each column containing a leading entry 1, all the other entries must be zeros.

Example:

[1	0	0	0	0	0
0	1	3	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

RREF