Some applications:

Newton's Law of Cooling / Heating

Principle:

The rate of change of the temperature of a body is proportional to the difference between its Temp. and the temp. of the surrounding medium

That is, if

$$
\begin{aligned}
& T(t):=\text { Temp. of the body at time } t \text {; } \\
& T_{m}:=\text { Temp. of the surrounding medium }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{d T}{d t} \propto T-T_{m} \\
& \frac{d T}{d t}=K\left(T-T_{m}\right), \quad K \text { constant }
\end{aligned}
$$

From which we obtain,

$$
T(t)=T_{m}+C e^{k t}
$$

Consider the following example:

Example

A small metal bar, whose initial temperature was $20^{\circ} \mathrm{C}$, is dropped into a large container of boiling water. How long will it take the bar to reach $90^{\circ} \mathrm{C}$ if it is known that its temperature increases 2° in one second?

