1.2 Initial Value Problem (IVP)

[An ODE with Given Relation(s) between value of x and value of y (and its Derivatives)]

Type	Problem	Explanation	Geometric Meaning	Graph
$\begin{gathered} 1^{\text {st }} \\ \text { Order } \end{gathered}$ IV P	$y^{\prime}=f(x, y)$ Subject to $\begin{aligned} y\left(x_{0}\right) & =y_{0} \\ & \ldots(\text { II }) \end{aligned}$	i. (I) gives a One-parameter family of solutions $\begin{equation*} g(x, y, c)=0 \tag{I} \end{equation*}$ defined on an Interval \mathbf{I}. ii. Condition (II) when used in the Solution of (I) gives the value of constant c.	The solution curve of the ODE Passes through the Point $\left(x_{0}, y_{0}\right)$.	
$\begin{aligned} & 2^{\text {nd }} \\ & \text { Order } \\ & \text { IV P } \end{aligned}$	$\begin{equation*} y^{\prime \prime}=f(x, y) \tag{I} \end{equation*}$ Subject to $\begin{array}{r} y\left(x_{0}\right)=y_{0} \\ y^{\prime}\left(x_{0}\right)=y_{1} \\ \ldots(\text { II) } \end{array}$	i. (I) gives a Two-parameter family of solutions $g\left(x, y, c_{1}, c_{2}\right)=0$ ii. Two Initial Conditions given by (II) when used in the Solution of (I) gives the value of constants c_{1} and c_{2}. Slope m of Tangent Line to the solution curve at $\left(x_{0}, y_{0}\right)$ is y_{1}.	i. The solution curve of the ODE Passes through the Point $\left(x_{0}, y_{0}\right)$. ii. Slope of Tangent Line to the solution curve at $\left(x_{0}, y_{0}\right)$ is y_{1}	

Example 1.

Solve $y^{\prime}=2 x$ subject to $y(1)=-3$
Solution: $y=x^{2}+c$. I C $\Rightarrow-3=1+c$

$$
\text { Ans: } \quad y=x^{2}-4
$$

Theorem: Sufficient Condition for Existence \& Uniqueness of Solution for IVP
Given
Condition
'Sufficient'

1. Region $\boldsymbol{R}=\{(x, y): a \leq x \leq b ; c \leq x \leq d\}$.
2. $\left(x_{0}, y_{0}\right)$ is point contained inside \boldsymbol{R} 3. $f(x, y)$ and $f_{y}(x, y)$ are continuous on \boldsymbol{R}.
Conclusion: The IVP $y^{\prime}=f(x, y)$ Subject to $y\left(x_{0}\right)=y_{0}$ has a Unique Solution in an interval I containing x_{0}.

Example: i. Both functions are the solutions of the IVP: $y^{\prime}=y \sqrt{x}$ Subject to $y(0)=0$ (Check!) ii. $f(x, y)$ and $f_{y}(x, y)$ are continuous on $\boldsymbol{R}=\{(x, y):-\infty<x<\infty ; 0<x<\infty\}$. (Check!)
[Note: $(0,0) \notin \boldsymbol{R}$]
iii. Explain why the IVP: $y^{\prime}=y \sqrt{ }$ Subject to $y(0)=2$ has a unique solution on an interval centered at 0 .

Exercise: Determine a Region \boldsymbol{R} in $\boldsymbol{x y}$-plane in which the ODE $\left(y^{2}-x^{2}\right)-y^{\prime}=y^{2}$ has a unique solution through a point $\left(x_{0}, y_{0}\right) \in \boldsymbol{R}$.

Example 3. Show that

$y=\mathrm{c}_{1} \cos 4 x+\mathrm{c}_{2} \sin 4 x$
is a two-parameter family of solutions of

$$
y^{\prime \prime}+16 y=0
$$

Example 4. Find the Solution of the IVP

$$
y^{\prime \prime}+16 y=0
$$

subject to $y(\pi / 2)=-2 ; y^{\prime}(\pi / 2)=1$.
Solution: Consider the solution
$y=\mathrm{c}_{1} \cos 4 x+\mathrm{c}_{2} \sin 4 x \quad$ (Example 3)
Use the given Initial Conditions to find c_{1} and c_{2}.
[Ans: $\mathrm{c}_{1}=-2 ; \mathrm{c}_{2}=1 / 4$]

Difference between Necessary and Sufficient Conditions

i. Given condition is Necessary \& it is not Satisfied: the Conclusion will not hold.
ii. Given condition is Necessary \& it is Satisfied: the Conclusion may or may not hold.
iii. Given condition is Sufficient $\&$ it is not Satisfied: the Conclusion may or may not hold.
iv. Given condition is Sufficient \& it is Satisfied: the Conclusion will definitely hold hold

