1.2 Initial Value Problem (IVP)

[An ODE with Given Relation(s) between value of x and value of y (and its Derivatives)]

Туре	Problem	Explanation	Geometric	Graph
			Meaning	
1 st Order IVP	y' = f(x, y) (I) Subject to $y(x_0) = y_0$ (II)	 i. (I) gives a One-parameter family of solutions g (x, y, c) = 0 defined on an Interval I. ii. Condition (II) when used in the Solution of (I) gives the value of constant <i>c</i>. 	The solution curve of the ODE Passes through the Point (x_0, y_0) .	$\frac{\mathcal{Y}}{(x_{0},y_{0})}$
2 nd Order I V P	y''=f(x, y) (I) Subject to $y(x_0) = y_0$ $y'(x_0) = y_1$ (II)	 i. (I) gives a Two-parameter family of solutions g (x, y, c₁, c₂) = 0 ii. Two Initial Conditions given by (II) when used in the Solution of (I) gives the value of constants c₁ and c₂. Slope m of Tangent Line to the solution curve at (x₀, y₀) is y₁. 	i. The solution curve of the ODE Passes through the Point (x_0, y_0) . ii. Slope of Tangent Line to the solution curve at (x_0, y_0) is y_1	y (x_{0},y_{0}) $m = y_{1}$ x I

Example 1. Solve y'=2 x subject to y(1) = -3Solution: $y = x^2 + c$. I C $\Rightarrow -3 = 1 + c$ Ans: $y = x^2 - 4$

Theorem: Sufficient Condition for Existence & Uniqueness of Solution for IVP

Given Condition 'Sufficient'

n t' **1**. Region $\mathbf{R} = \{(x,y): a \le x \le b; c \le x \le d\}$. **2**. (x_0,y_0) is point contained inside \mathbf{R} **3**. f(x, y) and $f_y(x, y)$ are continuous on \mathbf{R} .

<u>Conclusion</u>: The IVP y' = f(x, y) Subject to $y(x_0) = y_0$ has a Unique Solution in an interval **I** containing x_0 .

Example: i. Both functions are the solutions of the IVP: $y' = y \sqrt{x}$ Subject to y(0) = 0 (Check!) ii. f(x, y) and $f_y(x, y)$ are continuous on $R = \{(x,y): -\infty < x < \infty; 0 < x < \infty\}$. (Check!) [Note: $(0, 0) \notin R$] iii. Explain why the IVP: $y' = y \sqrt{x}$ Subject to y(0) = 2

has a unique solution on an interval centered at 0.

Exercise: Determine a Region **R** in *xy*-plane in which the ODE $(y^2 - x^2) - y' = y^2$ has a unique solution through a point $(x_0, y_0) \in \mathbf{R}$.

Example 3. Show that $y=c_1\cos 4x+c_2\sin 4x$ is a two-parameter family of solutions of y'' + 16 y = 0

Example 4. Find the Solution of the IVP $y'' + 16 \ y = 0$ subject to $y(\pi / 2) = -2; \ y'(\pi / 2) = 1.$ **Solution:** Consider the solution $y = c_1 \cos 4x + c_2 \sin 4x$ (**Example 3**) Use the given Initial Conditions to find c_1 and c_2 . [Ans: $c_1 = -2; \ c_2 = \frac{1}{4}$]

Difference between Necessary and Sufficient Conditions

- i. Given condition is Necessary & it is not Satisfied: the Conclusion will not hold.
 - ii. Given condition is Necessary & it is Satisfied: the Conclusion may or may not hold.
- iii. Given condition is Sufficient & it is not Satisfied: the Conclusion may or may not hold.
 - iv. Given condition is Sufficient & it is Satisfied: the Conclusion will definitely hold hold