1.1 Definition and Terminology

Notations

Notation	Meaning	Remark	Example
y = f(x)	y is a function of x	i. x is Independent Variable	$(1) y = 3 \sin x + 5$
	[Explicit Function]	ii. y is Dependent Variable	(2) $y = 2 \ln x + 3\sqrt{x}$
f(x, y) = 0	Functional Equation	In many cases, y CAN NOT be	(*) $y \cos x + y^2 x = 6$
	[y as Implicit Function of x]	an Explicit Function of x	
dy ,,	Ordinary Derivative of y with	Rate of Change of y with	$(1) y' = 3\cos x$
$\frac{dy}{dx}$ or y'	respect to x	respect to x	(*) $y' = \frac{y \sin x - y^2}{\cos x + 2yx}$
			,
z = f(x, y)	z is a function of x , y	i. x, y are Independent Variable	$(3) z = 3 \sin(xy) - x$
		ii. z is Dependent Variable	
∂z	Partial Derivative of z with	Rate of Change of z with	∂z
$\frac{\partial z}{\partial y}$ or z_y	respect to y	respect to <i>y</i>	$(3) \frac{\partial z}{\partial y} = 3x \cos(xy)$
		Variable x will be treated as Constant	-

Differential Equations

An Equation that Contains <u>Derivatives</u> or <u>Partial Derivatives</u> of <u>One or More Dependent</u>
Variables with respect to One or More Independent Variables

Classifications of Differential Equations

I. Type of Differential Equations (ODE / PDE)

Ordinary Differential Equation (ODE) contains

Ordinary Derivatives of One or More Dependent Variables w.r.t. a Single Independent Variable

Examples

$$1. 3\frac{dy}{dx} + 2y = e^{4x}$$

2.
$$\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4x^2y = 0$$

Partial Differential Equation (PDE) contains

Partial Derivatives of One or More Dependent Variables w.r.t. Two or More Independent Variable

Examples

1.
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

$$2. \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial t^2} - 2 \frac{\partial u}{\partial t}$$

II. Order of Differential Equations

[Order of Highest Derivative in the Equation]

Examples:

1.
$$3\frac{dy}{dx} + 2y = e^{4x}$$
 (First Order ODE)

$$2. \frac{d^2y}{dx^2} - x \left(\frac{dy}{dx}\right)^4 + 4x^2y = 0 \text{ (2nd Order ODE)}$$

$$3. f(x, y, y', y'',, y^{(n)}) = 0$$
 (nth Order ODE)

III. Linear ODE

$$y^{(n)} = f(x, y, y',, y^{(n-1)})$$

is Linear ODE if f is a Linear Function of $v, v, \dots, v^{(n-1)}$

	V / V		
	ODE	Order	Linear
1.	$2y'+3xy = y\sin x$	1	Yes
2.	$2y' + 3xy = \sin y$	1	No
3.	$y'''+3xy y'=\sin x$	3	No
4.	$y'+3x(y'')^3=\sin x$	2	No
5.	$y' + 3\sin x y'' = \cos x$	2	Yes

Solution of a Differential Equations
$$f(x,y,y',y'',...y^{(n)}) = 0$$
 $y = \Box(x)$ defined on an Interval **I** is a Solution if $f(x, \Box, \Box', \Box'', ... \Box^{(n)}) = 0$

Exercises 1.1

Q.	Equation	Type	Order	Linear /	Solution
				Nonlinear	(Verify!)
15	$y' = 25 + y^2$ $x^2 dy +2xy dx = 0$				$y = 5 \tan x$
19					$y = -1/(x^2)$
21	$y = 2xy' + y(y')^2$				$y^2 = c_1(x + \frac{1}{4}c_1)$
34	$y'' + y = \tan x$				$y = -\cos x \ln(\sec x + \tan x)$
41	$(y')^2 = 9 xy$				[0, x<0]
					$y = \begin{cases} 0, & x < 0 \\ x^3 & x \ge 0 \end{cases}$
42	y'' - 5y' + 6y = 0				$y = e^{mx}$ for some m
43	$x^2y'' - y = 0$				$y = x^{\rm m}$ for some m

Type of Solutions of ODE

	Type	Explanation	Examples		
1	Explicit	Dependent Variable is Expressed Only in	Q. 15, 19, 34, 41, 42, 43 have		
	Solution	terms of Independent Variable, i.e.	Explicit Solutions on Intervals with		
		$y=\Box(x), x \in I$	some Condition (Can you find it?)		
2	Trivial	Solution: $y = 0$ on some interval I	i. Q. 21, 41-43 : Trivial Solution on R .		
	Solution	[Note: Not Every ODE has a Trivial Sol.]	ii. Q.19 : Trivial Solution on any		
			interval not containing 0.		
			iii.Q. 15, 34 : No Trivial Solution.		
3	Implicit	A Solution of the Form : $G(x, y) = 0$ on an	i. Q. 21: The solution is Implicit.		
	Solution	Interval I where at least One Function			
		a) $y=\Box(x)$ satisfies the ODE			
		b) $y=\Box(x)$ is an implicit function of x.			

- 1. i. <u>Integral of ODE</u>: Solution of ODE ii. <u>Integral Curve</u>: Graph of Solution
- 2. <u>One-Parameter Family of Solutions</u>: A Solution G(x,y,c)=0 of 1st Order ODE F(x,y,y')=0 [Note: The solution contains One Parameter c, the constant due to one Integration]
- 3. **n- Parameter Family of Solutions:** $G(x,y,c_1,...c_n)=0$ for nth Order ODE $F(x,y,y',...,y^{(n)})=0$
- 4. Particular Solution: A Solution of ODE that is free of Arbitrary Parameter. [See Solutions: Q 15,19]
- 5. <u>Piecewise-Defined Solution</u>: A Particular Solution of ODE in the Form of Piecewise-Defined Function which can not be obtained from the Parametric Family of Solutions. [See Solution: Q 41]
- 6. <u>Singular Solution</u>: A Solution of ODE that cannot be obtained from the Parametric Family of Solutions simply by the replacement of the Parameter(s) with constant(s).

Example: i. $y = (x^2/4 + c)^2$ is a one-parameter family of Solutions for the ODE $y' = x\sqrt{y}$. ii. y = 0 is also a solution of the same ODE. But it can not be obtained from $y = (x^2/4 + c)^2$