Math 260 - Quiz \# 5b

Name: \qquad Sec.\#: \qquad Sr \#: \qquad

Find a basis and the dimension of the solution space of the system: $\quad\left(\lambda I_{3}-A\right) X=0$, for

$$
A=\left[\begin{array}{ccc}
-3 & 0 & -1 \\
2 & 1 & 0 \\
0 & 0 & -2
\end{array}\right] \text { and } \lambda=-2
$$

Solution:

$$
\begin{aligned}
& \lambda I_{3}-A=-2\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
-3 & 0 & -1 \\
2 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-2 & -3 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\Rightarrow & \left(\lambda I_{3}-A\right) X=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-2 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Solving:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
-2 & -3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{2 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\frac{-1}{3} R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & \frac{-2}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \Rightarrow \quad x_{3}=r \\
& x_{2}=\frac{2}{3} r \\
& x_{1}=-r \\
& X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-r \\
\frac{2}{3} r \\
r
\end{array}\right]=r\left[\begin{array}{c}
-1 \\
\frac{2}{3} \\
1
\end{array}\right]
\end{aligned}
$$

Hence, a basis for the solution space is $\{(-3,2,3)\}$, and its dimension is 1 .

