Steps to reduce a matrix to Row Echelon Form:

1. Find if there is any element $=1$ in the first column; if it occurs in row i in row I then $R_{i} \leftrightarrow R_{1}$. If not, look at any non-zero element in the first column and if it is in row i then $R_{i} \leftrightarrow R_{1}$.
2. If all elements in the first column are zero, move to the second column and apply step 1 as above.
3. If a_{11} now is 1 , go to the next step. If $a_{11} \neq 1$ then divide R_{1} by a_{11}.
4. Try to make all entries under $1=a_{11}$ to be zeros.
5. Ignore R_{1} and repeat the same steps for the matrix obtained by deleting R_{1} till you have some thing like:

$$
\left[\begin{array}{llllll}
1 & * & * & * & * & * \\
0 & 1 & * & * & * & * \\
0 & 0 & 0 & 1 & * & * \\
0 & 0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Now the matrix is in row echelon form.

If the matrix to be reduced to Reduced Row Echelon form then
6. In each column containing a leading entry 1 , all the other entries must be zeros.

