How to solve $\mathrm{n}^{\text {th }}$ order linear DE using the method of undetermined coefficients

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=f(x) \tag{1}
\end{equation*}
$$

Remember first:

* The associated homogeneous equation of (1) is

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=0 \tag{2}
\end{equation*}
$$

$\nLeftarrow f(x)$ is a polynomial or exp., sin, cos or sum and product of these functions.

* The general solution of (1) is $\quad y=y_{h}+y_{p}$
where y_{h} is the solution of (2) and y_{p} is a particular solution of (1).

Case I [No duplication]
Step1: Find the complimentary solution y_{h} by solving (2).
Step2: Guess the form of y_{p} as we explained earlier. Be careful, if any part of your guessing appears in y_{h}, then go to case II.

Step3: Substitute for y_{p} and its derivatives in the given DE.
Step4: Find the constants we introduced in step2 and determine y_{p}.
Step5: Write the general solution of (1) as $y=y_{h}+y_{p}$.
Step6: In case of IVP, use the initial conditions to find the unique solution.

Now see our examples done in the class. Also read examples 5, 6 and 7 on pages 337 - 339 form your book.

Case II [The case of duplication]
i.e. when a function in the assumed y_{p} is also a solution of the associated hom. DE (2)

Step1: Same as in case I.
Step2: We first make our initial guess for y_{p} as before. So, suppose we have:

$$
y_{p}=y_{p_{1}}+y_{p_{2}}+\ldots y_{p_{m}}
$$

If any $y_{p_{i}}$ contains terms that duplicate terms in y_{h}, then multiply $y_{p_{i}}$ by x^{n}, where n is smallest positive integer that eliminates that duplication.

Step3 - Step6: same as in case I.
Now see our examples done in the class. Also see examples 8, 9 and 10 on pages 341 - 342.

