Example 3 [Section 6.1.2]

Solve the IVP

$$(x-1)y'' - xy' + y = 0$$
 (*)
 $y(0) = -2$, $y'(0) = 6$

Solution

- Choosing ordinary point x_0
 - We choose $x_0 = 0$

[since initial condition is at x = 0]

- Considering series solution y and putting y, y', y'' in (*)
 - Take $y = \sum_{n=0}^{\infty} c_n x^n$.
 - Then $y' = \sum_{n=1}^{\infty} nc_n x^{n-1}$, $y'' = \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2}$.
 - Putting in (*) gives

$$(x-1)\sum_{n=2}^{\infty}n(n-1)c_nx^{n-2}-x\sum_{n=1}^{\infty}nc_nx^{n-1}+\sum_{n=0}^{\infty}c_nx^n=0$$

- Simplifying & shifting index
 - Above equation can be written as

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-1} - \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - \sum_{n=1}^{\infty} nc_n x^n + \sum_{n=0}^{\infty} c_n x^n = 0$$
Put $k = n - 1$
Put $k = n - 2$
Put $k = n$

$$\Rightarrow \sum_{k=1}^{\infty} (k+1)kc_{k+1}x^{k} - \sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2}x^{k} - \sum_{k=1}^{\infty} kc_{k}x^{k} + \sum_{k=0}^{\infty} c_{k}x^{k} = 0$$
 series in the 1 involving x^{k}

Writing each series in the form involving x^k

- Writing as single series
 - Above equation implies

$$-2c_2 + c_0 + \sum_{k=1}^{\infty} \left[-(k+2)(k+1)c_{k+2} + (k+1)kc_{k+1} - (k-1)c_k \right] x^k = 0$$

• Comparing coefficients of powers of x

• Comparing coefficients of powers of x gives

$$-2c_2 + c_0 = 0$$

-(k+2)(k+1)c_{k+2} + (k+1)kc_{k+1} - (k-1)c_k = 0

Which gives

$$c_2 = \frac{c_0}{2}$$

$$c_{k+2} = \frac{k}{k+2}c_{k+1} - \frac{(k-1)}{(k+2)(k+1)}c_k$$

Recurrence relation to determine coefficients c_n

for $k \ge 1$

for $k \ge 1$

• Finding coefficients c_n 's

•
$$k=1 \implies c_3 = \frac{1}{3}c_2 - 0c_1 = \frac{c_0}{6}$$

•
$$k=2 \implies c_4 = \frac{2}{4}c_3 - \frac{1}{4 \cdot 3}c_1 = \frac{1}{2} \cdot \frac{c_0}{6} - \frac{1}{12} \cdot \frac{c_0}{2} = \frac{c_0}{24}$$

. :

• Writing general solution

• $y = \sum_{n=0}^{\infty} c_n x^n$ implies

$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \cdots$$

$$= c_1 x + c_0 + \frac{c_0}{2} x^2 + \frac{c_0}{6} x^3 + \frac{c_0}{24} x^4 + \cdots$$

$$= c_1 x + c_0 \left(1 + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots \right)$$
General solution

Writing solution of IVP

• From above we have
$$y' = c_1 + c_0 \left(\frac{2x}{2} + \frac{3x^2}{6} + \frac{4x^3}{24} + \dots \right)$$

• Hence
$$y(0) = -2$$
 \Rightarrow $c_0 = -2$
and $y'(0) = 6$ \Rightarrow $c_1 = 6$

• Therefore solution of IVP is

$$y = 6x - 2\left(1 + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots\right).$$

• We have found the solution

$$y = 6x - 2\left(1 + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots\right)$$

Is this a well known power series of some function?

• We can write as

$$y = 6x - 2\left(1 + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots\right)$$

Which implies

$$y = 6x - 2(e^x)$$

Hence the solution of IVP is

$$y = 6x - 2e^x$$

Example 4 [Section 6.1.2]

Solve
$$y'' + \sin(x)y = 0$$
 (*)
about the ordinary point $x_0 = 0$.

Solution

- Considering series solution y and putting y, y', y'' in (*)
 - Take $y = \sum_{n=0}^{\infty} c_n x^n$.
 - Then $y' = \sum_{n=1}^{\infty} nc_n x^{n-1}$, $y'' = \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2}$.
 - Putting in (*) gives

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} + (\sin x) \sum_{n=0}^{\infty} c_n x^n = 0$$

To proceed we need to write $\sin x$ as a power series

- Putting series expansion of sin x and simplifying
 - Using series expansion of $\sin x$ we get

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} + \left(x - \frac{x^3}{3!} + \cdots\right) \sum_{n=0}^{\infty} c_n x^n = 0$$

This implies

$$\left[2c_2 + 6c_3x + 12c_4x^2 + 20c_5x^3 + \cdots\right] + \left(x - \frac{x^3}{3!} + \cdots\right) \left[c_0 + c_1x + c_2x^2 + \cdots\right] = 0$$

How to handle such products?

See below.

$$\left(x - \frac{x^3}{3!} + \cdots\right) \left[c_0 + c_1 x + c_2 x^2 + \cdots\right] = \left(c_0 x + c_1 x^2 + c_2 x^3 + \cdots\right) + \left(-c_0 \frac{x^3}{3!} - c_1 \frac{x^4}{3!} - c_2 \frac{x^5}{3!} + \cdots\right) + \cdots$$

$$= c_0 x + c_1 x^2 + \left(c_2 - \frac{c_0}{6}\right) x^3 + \cdots$$

Hence series becomes

$$\left[2c_2 + 6c_3x + 12c_4x^2 + 20c_5x^3 + \cdots\right] + \left[c_0x + c_1x^2 + \left(c_2 - \frac{c_0}{6}\right)x^3 + \cdots\right] = 0$$

$$\Rightarrow 2c_2 + \left(6c_3 + c_0\right)x + \left(12c_4 + c_1\right)x^2 + \left(20c_5 + c_2 - \frac{c_0}{6}\right)x^3 + \cdots = 0 \tag{**}$$

• Comparing coefficients of powers of x to get c_n 's

• Comparing coefficients of powers of x in (**) gives

$$c_{2} = 0$$

$$c_{3} = -\frac{c_{0}}{6}$$

$$c_{4} = -\frac{c_{1}}{12}$$

$$c_{5} = -\frac{c_{2}}{20} + \frac{c_{0}}{120} = \frac{c_{0}}{120}$$

$$\vdots$$

• Writing general solution

•
$$y = \sum_{n=0}^{\infty} c_n x^n$$
 implies

$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5 + \cdots$$

$$= \left(c_0 - c_0 \frac{x^3}{6} + c_0 \frac{x^5}{120} + \cdots\right) + \left(c_1 x - c_1 \frac{x^4}{12} + \cdots\right)$$

$$= c_0 \left(1 - \frac{x^3}{6} + \frac{x^5}{120} + \cdots\right) + c_1 \left(x - \frac{x^4}{12} + \cdots\right)$$
General solution