
10.4 Infinite Series 
[Read Examples 1 to 5 p.658-669] 

 
1. New Concept:  “Infinite Series”  

• Sigma Notation: 
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2. General Term of the Series 
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3. Important:  Recognize the Difference 

between a Sequence & a Series 
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4. New Concept:   

Sequence of nth Partial Sums of ∑ : 
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5. Important Examples: 
i. Geometric Series (G.S.): 
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1st Term = a;  Common Ratio = r 
 

Formula for nth Partial Sum of G.S.: 1
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ii. Telescoping Series (T.S.): (Terms Go on 
Cancelling) 
 
Examples: 
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iii. Harmonic Series (H.S.): 
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6. Exercise: 
Find the sequence of nth partial sum of the above 
series and express it in compact form if possible.    

7. Convergent Series:  

i. An infinite series 
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In this case if lim nn
s
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of the series 
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not have finite limit, we say that the series 
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8. Exercises: Check if the following series 
converge. If so, find the sum. 
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9. New Concept:  “Repeating Decimals”  
i. 0.333333…;  ii. 1.002002002…..;  
iii. 0.451141414… iv. 0.782178217821… 
 
Exercises: Express 0.451141414… as a fraction. 
 
Method: 
i. Identify the repeating decimal numbers: 

0.451+0.000141414… 
ii. Express the part of repeating decimals as a 
Geometric Series: 

0.000141414…= 0.00014+0.0000014+….. 
                  5 7 9
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iii. Apply Geometric Series Formula to find Sum. 
iv. Simplify the whole answer to a fraction. 
 
10.  Not all the series have nth Partial Sum in 
compact form. 

Exercise: Can we find nth Partial Sum of H.S. 1
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in compact form. Does this series converge? 

Exercise: Can we find nth Partial Sum of ( )
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in compact form. Does this series converge? 

Exercise: Find the nth Partial Sum of series
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For what values of x this series is convergent? 
 
Exercise: Find the nth Partial Sum of the series 
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