10.4 Infinite Series [Read Examples 1 to 5 p.658-669]

- 1. New Concept: "Infinite Series"
- Sigma Notation: $\sum_{n=1}^{\infty} a_n$ or $\sum_{k=1}^{\infty} a_k$
- Expanded Form: $a_1 + a_2 + a_3 + \cdots$

3. *Important*: Recognize the Difference between a Sequence & a Series

$$\left\{a_{n}\right\}_{n=1}^{\infty};$$

 $\sum_{n=1}^{\infty} a_n$

4. New Concept:

Sequence of *n*th Partial Sums of $\sum_{n=1}^{\infty} a_n$: $\{s_n\}_{n=1}^{\infty}$ where $s_n = \sum_{k=1}^{n} a_k$.

5. Important Examples:

i. Geometric Series (G.S.):

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$
.
Term = *a*; Common Ratio =

Formula for n^{th} **Partial Sum of G.S.:** $s_n = a \cdot \frac{1-r^n}{1-r}$.

Examples:

 1^{st}

a.
$$\sum_{n=1}^{\infty} \frac{5}{3^n} = \frac{5}{3} + \frac{5}{3^2} + \frac{5}{3^3} + \cdots$$

b.
$$\sum_{k=1}^{\infty} 3(0.1)^k = .3 + .03 + .003 + \cdots$$

ii. Telescoping Series (T.S.): (*Terms Go on Cancelling*)

Examples:

a.
$$\sum_{n=1}^{\infty} \left[\frac{1}{n} - \frac{1}{n+1} \right] = \left[1 - \frac{1}{2} \right] + \left[\frac{1}{2} - \frac{1}{3} \right] + \left[\frac{1}{3} - \frac{1}{4} \right] + \cdots$$

b.
$$\sum_{n=1}^{\infty} \left[\frac{1}{2n-1} - \frac{1}{2n+3} \right] = \left[1 - \frac{1}{5} \right] + \left[\frac{1}{3} - \frac{1}{7} \right] + \left[\frac{1}{5} - \frac{1}{9} \right] + \left[\frac{1}{7} - \frac{1}{11} \right] + \cdots$$

iii. Harmonic Series (H.S.):

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$

6. Exercise:

Find the sequence of n^{th} partial sum of the above series and express it in compact form if possible.

7. Convergent Series:

i. An infinite series $\sum_{n=1}^{\infty} a_n$ converges if its sequence of n^{th} Partial Sums $\{s_n\}_{n=1}^{\infty}$ has a finite limit.

In this case if $\lim_{n\to\infty} s_n = s$, we say that s is the sum

f the series
$$\sum_{n=1}^{\infty} a_n$$
 .

ii. If the sequence of n^{th} Partial Sums $\{s_n\}_{n=1}^{\infty}$ does not have finite limit, we say that the series $\sum_{n=1}^{\infty} a_n$ Diverges.

<u>8. Exercises</u>: Check if the following series converge. If so, find the sum.

i.
$$\sum_{k=1}^{\infty} \left(-1\right)^{k-1} \frac{7}{6^{k-1}}$$
; ii. $\frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \cdots$; iii. $\sum_{k=1}^{\infty} \frac{1}{9k^2 + 3k - 2}$.

 9. New Concept:
 "Repeating Decimals"

 i. 0.333333...;
 ii. 1.002002002....;

 iii. 0.451141414...
 iv. 0.782178217821....

Exercises: Express 0.451141414... as a fraction.

Method:

i. Identify the repeating decimal numbers: 0.451+0.000141414...

ii. Express the part of repeating decimals as a Geometric Series:

0.000141414...=0.00014+0.0000014+...

$$= 14 \left[\frac{1}{10^5} + \frac{1}{10^7} + \frac{1}{10^9} + \cdots \right]$$

iii. Apply Geometric Series Formula to find Sum. iv. Simplify the whole answer to a fraction.

10. Not all the series have n^{th} Partial Sum in compact form.

Exercise: Can we find n^{th} Partial Sum of H.S. $\sum_{n=1}^{\infty} \frac{1}{n}$

in compact form. Does this series converge?

Exercise: Can we find n^{th} Partial Sum of $\sum_{n=1}^{\infty} (-1)^n$

in compact form. Does this series converge?

Exercise: Find the n^{th} **Partial Sum** of series $\sum_{n=1}^{\infty} x^n$. For what values of x this series is convergent?

Exercise: Find the *n*th **Partial Sum** of the series $\sum_{k=1}^{\infty} \ln(1 - \frac{1}{(k+1)^2})$. Does this series converge?