10.1 Taylor & Maclaurin Polynomial [Read Examples 1 to 6 p.639-645]

1. Review

Local Linear Approximation of f(x) at x = a: p(x) = f(a) + f'(a)(x-a).

p(x) = f(a) + f(a)(x - a)

Properties [LLA]:

- i. [**Degree**] p(x) is a polynomial of degree 1.
- ii. [Graph] The graph of p(x) is a line touching the graph of f(x) at *a*.
- iii. [*Matching*] p(a) = f(a); p'(a) = f'(a)
- iv. [**Role**] $p(x) \approx f(x)$ when $x \approx a$.

Ex. 1: Find LLA of $f(x) = \sin x$ about $x = \frac{\pi}{6}$

<u>2. New Name for LLA</u>: 1^{st} Taylor Polynomial for f about x = a: p(x) = f(a) + f'(a)(x-a).

Ex.2: Find 1^{st} Taylor Polynomial for $f(x) = \sin x$ about $x = \frac{\pi}{6}$ and approximate $\sin 31^{\circ}$.

<u>3. New Concept</u>: n^{th} Taylor Polynomial of f about x = a: $\sum_{k=1}^{n} f^{(k)}(a) = \sum_{k=1}^{k} f^{(k)}(a)$

$$p_n(x) = \sum_{k=0}^{n} \frac{f(a)}{k!} (x-a)$$

Properties:

- i. [**Degree**] $p_n(x)$ is a polynomial of degree *n*.
- ii. [**Graph**] The graph of $p_n(x)$ is a curve touching the graph of f(x) at a.

iii. [Matching] $p_n(a) = f(a), p'(a) = f'(a), \dots, p^{(n)}(a) = f^{(n)}(a)$

iv. [**Role**] $p(x) \approx f(x)$ when $x \approx a$.

4. Special Cases:

i. 2^{nd} Taylor Polynomial of f about x = a= Local Quadratic Approx. about a

ii. 3^{rd} Taylor Polynomial of f about x = a= Local Cubic Approx. about a

Ex.3: Find 3^{rd} Taylor Polynomial for $f(x) = \sin x$ about $x = \frac{\pi}{6}$ and approximate $\sin 31^{\circ}$

5. New Concept:

 n^{th} Maclaurin Polynomial of f= n^{th} Taylor Polynomial of f about x = 0. **Ex.3:** (a) Find the Local Quadratic Approximation of $f(x) = \frac{1}{x+2}$ about x = 0.

(b) Also, find the n^{th} Maclaurin polynomial in sigma notation.

Ex.4: Find the 2nd Maclaurin polynomial of $f(x) = \frac{1}{x+2}$. [Same as Ex. 3(a)]

6. New Concepts:

i. Approximation Error due to n^{th} Taylor Polynomial of f: $R_n(x) = f(x) - p_n(x)$.

ii. **Taylor's Formula with Remainder:** $f(x) = p_n(x) + R_n(x)$.

7. New Concept:

Remainder Estimation Theorem for n^{th} Taylor Poly. of f defined on an interval I about x = a

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}.$$

where $M = \max_{x \in I} \left[f^{(n+1)}(x) \right]$

8. New Concept:

Problem: Use Remainder Estimation Theorem to approximate a given irrational number with accuracy up to 2 (or 3, 4, 5,...) decimal places.

Solution: For this do as follows:

- i. Identify the function *f* required for approximation.
- ii. Find suitable *a* for Taylor approx.
- iii. Use Remainder Estimaion Theorem to find *n* so that

$$|R_n(x)| \le .005$$
.

- iv. Find n^{th} Taylor Polyn. of f about a
- v. Approximate the given number using n^{th} Taylor Polyn. (where *n* is known).

Ex.5: Use the remainder estimation theorem to approximate \sqrt{e} to 4 decimal places accuracy.

Ex.6: Find the Maclaurin polynomial of $f(x) = \ln(1+x)$. [Same as Ex. 3(a)]