10.1 Taylor \& Maclaurin Polynomial
 [Read Examples 1 to 6 p.639-645]

1. Review

Local Linear Approximation of $f(x)$ at $\boldsymbol{x}=\boldsymbol{a}$:

$$
p(x)=f(a)+f^{\prime}(a)(x-a) .
$$

Properties [LLA]:
i. [Degree] $p(x)$ is a polynomial of degree 1.
ii. [Graph] The graph of $p(x)$ is a line touching the graph of $f(x)$ at a.
iii. $\quad[$ Matching $] p(a)=f(a) ; p^{\prime}(a)=f^{\prime}(a)$
iv. $\quad[\boldsymbol{R o l e}] p(x) \approx f(x)$ when $x \approx a$.

Ex. 1: Find LLA of $f(x)=\sin x$ about $x=\pi / 6$

2. New Name for LLA:

$\mathbf{1}^{\text {st }}$ Taylor Polynomial for \boldsymbol{f} about $\boldsymbol{x}=\boldsymbol{a}$:

$$
p(x)=f(a)+f^{\prime}(a)(x-a) .
$$

Ex.2: Find $1^{\text {st }}$ Taylor Polynomial for $f(x)=\sin x$ about $x=\pi / 6$ and approximate $\sin 31^{\circ}$.
3. New Concept:
$\boldsymbol{n}^{\text {th }}$ Taylor Polynomial of \boldsymbol{f} about $\boldsymbol{x}=\boldsymbol{a}$:

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Properties:

i. $\quad[$ Degree $] p_{n}(x)$ is a polynomial of degree n.
ii. [Graph] The graph of $p_{n}(x)$ is a curve touching the graph of $f(x)$ at a.
iii. [Matching]

$$
p_{n}(a)=f(a), p^{\prime}(a)=f^{\prime}(a), \ldots, p^{(n)}(a)=f^{(n)}(a)
$$

iv. $\quad[$ Role $] p(x) \approx f(x)$ when $x \approx a$.

4. Special Cases:

i. $2^{\text {nd }}$ Taylor Polynomial of f about $x=a$
$=$ Local Quadratic Approx. about \boldsymbol{a}
ii. $3^{\text {rd }}$ Taylor Polynomial of f about $x=a$
$=$ Local Cubic Approx. about a
Ex.3: Find $3^{\text {rd }}$ Taylor Polynomial for $f(x)=\sin x$ about $x=\pi / 6$ and approximate $\sin 31^{\circ}$

5. New Concept:

$\boldsymbol{n}^{\text {th }}$ Maclaurin Polynomial of f
$=n^{\text {th }}$ Taylor Polynomial of f about $x=0$.

Ex.3: (a) Find the Local Quadratic Approximation of $f(x)=\frac{1}{x+2}$ about $x=0$.
(b) Also, find the $n^{\text {th }}$ Maclaurin polynomial in sigma notation.

Ex.4: Find the $2^{\text {nd }}$ Maclaurin polynomial of $f(x)=\frac{1}{x+2}$. [Same as Ex. 3(a)]

6. New Concepts:

i. Approximation Error due to $n^{\text {th }}$ Taylor Polynomial of \boldsymbol{f} :

$$
R_{n}(x)=f(x)-p_{n}(x) .
$$

ii. Taylor's Formula with Remainder:

$$
f(x)=p_{n}(x)+R_{n}(x) .
$$

7. New Concept:

Remainder Estimation Theorem for $n^{\text {th }}$ Taylor Poly. of f defined on an interval I about $x=a$

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

where $M=\max _{x \in I}\left[f^{(n+1)}(x)\right]$

8. New Concept:

Problem: Use Remainder Estimation Theorem to approximate a given irrational number with accuracy up to 2 (or $3,4,5, \ldots$) decimal places.

Solution: For this do as follows:
i. Identify the function f required for approximation.
ii. Find suitable a for Taylor approx.
iii. Use Remainder Estimaion Theorem to find n so that

$$
\left|R_{n}(x)\right| \leq .005 .
$$

iv. Find $\boldsymbol{n}^{\text {th }}$ Taylor Polyn. of f about a
v. Approximate the given number using $\boldsymbol{n}^{\text {th }}$ Taylor Polyn. (where n is known).

Ex.5: Use the remainder estimation theorem to approximate \sqrt{e} to 4 decimal places accuracy.

Ex.6: Find the Maclaurin polynomial of $f(x)=\ln (1+x)$. [Same as Ex. 3(a)]

