Questions from old Exams

1 Section 4.2

- 1. Sketch the graph of $g(x) = -\left(\frac{1}{3}\right)^x + 3$. Write down the range of g and all asymptotes (if any).
- 2. Given $f(x) = \left(\frac{1}{3}\right)^{x-2} 1$.
 - (a) Applying translations to the graph of the function $\left(\frac{1}{3}\right)^x$, Sketch the graph of f(x).
 - (b) Find the x- and y-intercepts of f(x).
- 3. Given $f(x) = -\left(\frac{2}{3}\right)^x + 2$.
 - (a) Decide whether f is an increasing or a decreasing function.
 - (b) Find the y-intercept of f.
- 4. Simplify the expression $(e^x + e^{-x})^4 (e^x e^{-x})^4$.
- 5. Find the equation of the form $y = a^x$ whose graph contains the point (3,8).
- 6. If $f(x) = a^x$ and $f(-2) = \frac{1}{3}$, then find f(6).
- 7. If $f(t) = 3^{2-t}$ is written in the form $f(t) = ka^t$, then find the value of k and a.
- 8. Find the Domain and he Range of $f(x) = \frac{e^x + e^{-x}}{2}$.
- 9. Find the solution set of the inequality $x^2e^x 2xe^x > 0$.
- 10. Given $f(x) = 3^{x+1}$ and $g(x) = \left(\frac{1}{3}\right)^{x+5}$, then which of the following statements is TRUE?
 - (a) g(x) is an increasing function.
 - (b) f(x) is an decreasing function.
 - (c) The range of f(x) is $[0, \infty)$.
 - (d) The domain of g(x) is $[0, \infty)$.
 - (e) The graph of f(x) and g(x) intersect at $\left(-3, \frac{1}{9}\right)$.

2 Section 4.3

- 1. Let $f(x) = \log_{\frac{1}{2}} (3 x)$.
 - (a) Applying translations and reflections to the graph of the function $\log_{\frac{1}{2}} x$, sketch the graph of f(x).
 - (b) Find the Domain, the Range, and the Asymptote(s), if any, of the function f(x).
 - (c) Find the inverse function $f^{-1}(x)$.
- 2. For $a>0,\,a\neq1,$ and x>1, find the exponential form of the expression $y=\log_a{(x-1)}$.

- 3. Given $f(x) = -\log_{\frac{1}{2}}(x+9) 1$.
 - (a) Find the x- and y-intercepts of f(x).
 - (b) Graph f(x).
 - (c) Find the domain and the range of f(x).
 - (d) Find the equation of the asymptote of the graph of f(x).
- 4. Given $f(x) = -\frac{1}{2} + \log_9 (1 2x)$.
 - (a) Find the domain and the range of f(x).
 - (b) Find the asymptote (if any) of f(x).
 - (c) Find the x- and y-intercepts of f(x).
- 5. Find the Domain and the Range of the function $y = -|\log_{\frac{1}{2}} x^2| + 1$.
- 6. The following figure is the graph of:
 - (a) $f(x) = \log(x 1)$.
 - (b) $f(x) = -\log |x|$.
 - (c) $f(x) = \log(1 x)$.
 - (d) $f(x) = \log(-x)$.
 - (e) $f(x) = -\log(-x)$.
- 7. Find the domain of the function $y = \log(1 x^2)$.
- 8. Find the x- and y-intercepts of $y = \log_3 (2x + 1) 2$.
- 9. If $f(x) = \log(2x 1) 3$, then find $f^{-1}(-2)$.
- 10. The following figure represents the graph of:
 - (a) $y = \log_{\frac{1}{4}} (x 1)$.
 - (b) $y = \log_{\frac{1}{4}}(x+1)$.
 - (c) $y = 2^{-x+1} 6$.
 - (d) $y = 3^{-x+1} 4$.
 - (e) $y = -3^{-x+1} + 2$.
- 11. The following figure represents the graph of:
 - (a) $y = x \ln x$.
 - (b) $y = \frac{\ln x}{x}$.
 - (c) $y = |\ln x|$.
 - (d) $y = \ln |x|$.

- (e) $y = \frac{x}{\ln x}$.
- 12. The following figure represents the graph of:
 - (a) $y = \log_4(x 2)$.
 - (b) $y = \log_4 (2 x)$.
 - (c) $y = \log_4 |2 x|$.
 - (d) $y = \log_{\frac{1}{4}} (x 2)$.
 - (e) $y = \left| \log_{\frac{1}{4}} (x 2) \right|$.
- 13. The following figure represents the graph of:
 - (a) $y = \log_2(x 1)$.
 - (b) $y = \log_{\frac{1}{2}} (1 x)$.
 - (c) $y = \log_2 (1 x)$.
 - (d) $y = \log_{\frac{1}{2}}(x-1)$.
 - (e) $y = \ln(1 x)$.
- 14. The following figure represents the graph of:
 - (a) $y = \log_3 (2 + x)$.
 - (b) $y = \log_{\frac{1}{a}} (2 x)$.
 - (c) $y = \log_3 (3 x)$.
 - (d) $y = \log_{\frac{1}{2}} (3 x)$.
 - (e) $y = \log_{\frac{1}{2}} (3 + x)$.
- 15. The following figure represents the graph of:
 - (a) $y = 1 + \log_2 |x 1|$.
 - (b) $y = 1 + \log_2 |x 2|$.
 - (c) $y = 1 + \log_2 |x \frac{3}{2}|$.
 - (d) $y = \log_2 |x 1|$.
 - (e) $y = -1 + \log_2 |x 1|$.
- 16. Let f(x) be a logarithmic function such that f(2) = 3. Find the value of f(4).

3 Section 4.4

- 1. If $f(x) = e^x e^{-x}$, then find the value of $f(2 \ln 3)$.
- 2. Write the following as a single logarithmic function and simplify your answer if possible. (Assume x > 0, y > 0. and z > 0)
 - (a) $3\log_2(y^2z) 2\log_2(xy^2) + \log_2(x^3yz^4)$.
 - (b) $1 + \log_2(x^2y^3) \frac{1}{2}\log_2(x^6y^4)$.
 - (c) $5\log_3 x 8\log_9 y + \log_{\sqrt{3}} z + 1$. (with a base of 3).
 - (d) $3\log_2 x \log_{\sqrt{2}} y + \log_4 z^2$. (with a base of 2).
- 3. Find the value of the following:
 - (a) $\ln \left(\frac{1}{e^3} \right) + e^{\ln 7}$.
 - (b) $2\log_3 \sqrt{18} \log_3 2$.
 - (c) $(\log_3 64) (\log_4 \sqrt{3}) (\sqrt[3]{10})^{-3 \log 5}$.
 - (d) $\log_8 \frac{\sqrt[3]{16}}{4}$.
 - (e) $[\log_9 35 \log_9 7] \cdot [\log_5 9]$.
 - (f) $\left[\sqrt{2}\right]^{\frac{\log 9}{\log 2}}$.
 - (g) $(\log_5 16) (\log_2 \sqrt{5}) (\sqrt{e})^{-6 \ln 2}$.
 - (h) $2\log 5 + \frac{1}{2}\log 16$.
 - (i) $\ln(\ln e) + e^{-2\ln\sqrt{5}}$.
- 4. If $\log 2 = x$ and $\log 3 = y$, then write $1) \log \left(\frac{9}{25}\right)$ 2) $\log 75$ in terms of x and y.
- 5. If $\log_2 5 = x$ and $\log_2 3 = y$, then write $\log_{\sqrt{2}} 300$ in terms of x and y.
- 6. If $\log_c 2 = \frac{2}{3}$, then find $\log_8 c$.
- 7. If $\ln 2 = x$ and $\ln 10 = y$, then write $\ln 16000 + \ln 5$ in terms of x and y.
- 8. If $\log 0.04 = x$, then write $\log 80$ in terms of x.
- 9. If $\ln 2 = 0.7$ and $\ln 3 = 1.1$, then find the value of 1) $\log_{36} \left(\frac{e^3}{12}\right)$ 2) $\log_{\frac{2}{3}} \frac{4e^2}{27}$.
- 10. If $\log x = 2$, $\log y = 3$, and $\log z = 5$, then find $\log \frac{x^3y}{\sqrt{z}} \log_x z$.
- 11. If $\log 2 = a$, and $\log 3 = b$, then write $\log_4 60$ in terms of a and b.
- 12. If $\log_3 a = \frac{1}{3}$, then find $\log_a \left(\frac{1}{9}\right)$.
- 13. If $\ln 2 = x$ and $\ln 6 = y$, then write $\log_9 4$ in terms of x and y.
- 14. If $\log_2{(x-1)} = \frac{1}{2}$, then find the value of $\log_2{\left(2x^2 4x + 2\right)}$.

- 15. If a > 0, $a \neq 1$, and $y = \frac{\log(\ln a)}{\log a}$, then find a^y .
- 16. Find the value of $\ln \ln e^{e^{x+3}} e^{\ln x}$.
- 17. Write $\log_8 e^3 x$ in terms of $\ln x$.
- 18. Write $\log_a \frac{1}{x}$ in terms of log with base $\frac{1}{a}$.
- 19. Which one of the following is FALSE?
 - (a) $\ln e^x = x$ for any real number x.
 - (b) $e^{\ln x} = x$ for any real number x.
 - (c) $\ln \frac{1}{10} < \ln \frac{1}{3}$.
 - (d) $\log_{\frac{1}{2}} 4 > \log_{\frac{1}{2}} 5$.
 - (e) $g(x) = \left(\frac{1}{3}\right)^{-x}$ is an increasing function.
- 20. If x > 0, then which one of the following is TRUE?
 - (a) $\log(1+x) = \frac{x}{1+x}$.
 - (b) $\log(1+x) < \frac{x}{1+x}$.
 - (c) $\log(1+x) > x$.
 - (d) $\log(1+x) < x$.
 - (e) none of the above.
- 21. Which one of the following is FALSE?
 - (a) $\log_{\frac{1}{2}} 8 = -3$.
 - (b) $\log_a xy = \log_a x + \log_a y$, x > 0, y > 0, a > 0, and $a \neq 1$.
 - (c) $y = \log_a x$ if and only if $x = a^y$, x > 0, a > 0, and $a \ne 1$.
 - (d) $a^{\log_a x} = x, x > 0, a > 0, \text{ and } a \neq 1.$
 - (e) $\frac{\log_a x}{\log_a y} = \log_a (x y).$
- 22. Find the solution set of the following inequalities:
 - (a) $\log(x+4) < 0$.
 - (b) $\log_3 x + 2\log_9 x > 2$.
 - (c) $\log_{\frac{1}{2}} x^2 > -4$.
 - (d) $\log_5 x < \log x$.
 - (e) $\log_x 64 < 3$.
 - (f) $\log_2 x < -1$.

4 Section 4.5

1. Find the solution set of the following equations:

(a)
$$(125)^{3-x} = (25)^x 5^{1-x}$$
.

(b)
$$8^{2x-1} = 2\left(\frac{1}{16}\right)^{-\frac{1}{2}}$$
.

(c)
$$4^x - 7 \cdot 2^x + 12 = 0$$
.

(d)
$$\left(\frac{2}{3}\right)^{|k-5|} = \left(\frac{81}{16}\right)^{-|k|}$$
.

(e)
$$\frac{5^x + 5^{-x}}{5^x - 5^{-x}} = 3$$
.

(f)
$$\frac{10^x - (200)(10^{-x})}{2} = 49.$$

(g)
$$4^x - (3)(2^x) + 2 = 0$$
.

(h)
$$(343)^{3-x} = (49)^x$$
.

(i)
$$\left(\frac{3}{2}\right)^{|2x-1|} = \frac{27}{8}$$
.

(j)
$$\left(\frac{2}{3}\right)^{x-2} = \left(\frac{27}{8}\right)^{-2(x+3)}$$
.

(k)
$$e^x - 5 + 6e^{-x} = 0$$
.

(1)
$$2^{2x} + 6 \cdot 2^x + 4 = 0$$
.

(m)
$$2^{2x+1} - 7 \cdot 2^x - 4 = 0$$
.

(n)
$$(125)^{x(x-5)} = \left(\frac{1}{25}\right)^3$$
.

(o)
$$(e^x - 3)(e^x + 1) = -3$$
.

2. Find the solution set of the following equations:

(a)
$$\frac{1}{3}\log_2(x+5) + \log_8(3x-1) = 2$$
.

(b)
$$\log(x-2) + \log(x+1) = 1$$
.

(c)
$$2\log(x-2) = \log(\log 10^x) + 10^{\log(\log x)}$$
.

(d)
$$\log_8(x+5) + \log_8(3x-1) = \log_4 16$$
.

(e)
$$2\log_3(1-x) + \log_{\frac{1}{2}}(x-2) = 2\log_3 2$$
.

(f)
$$\log_3(-x) + \log_3(6-x) = 3$$
.

(g)
$$5\log_2(\log_4 16) + x = 1 + 2\ln e^x$$
.

(h)
$$\log_5(x-20) - \log_5\frac{1}{x} = \log 1000$$
.

(i)
$$\log x^3 = (\log x)^2$$
.

(j)
$$\log_3 \left(\log_{\frac{1}{2}} x \right) = 1.$$

(k)
$$(\log_c x) \cdot \log_5 c = 3$$
.

(1)
$$\log_x (\log_2 8) = 2$$
.

(m)
$$\log_{\frac{1}{x}} x^2 = 6$$
.

- (n) $2\log_2 x \log_2 (x 1) = 2$.
- (o) $2\log(x-3) = \log(x+5) + \log 4$.
- (p) $(\log x)^2 + 2 \log x^3 = 0$.
- (q) $\log (3x 1) = 1 \log x$.
- (r) $2\log(\sqrt{x+3}) + \log(2-x) = \log(-2x)$.
- (s) $\ln x = -(\ln x)^2$.
- (t) $\log_{3x+1} 4 = -2$.
- (u) $\ln(x-2) \log_{e^{-1}}(x+2) \ln(e^{\ln 12}) = 0.$
- (v) $\log_2 \sqrt{x-2} + \log_4 (x-4) = \frac{1}{2} (3 + \log_2 3)$.
- (w) $(\ln x)^2 \ln x^3 + 2 = 0$.
- 3. Find the product of all solutions of the equation $\log (2 6x) + \log (8 + x) = 2$.
- 4. Find the value of y if $y^{\frac{1}{3}} = \log_{\frac{1}{10}} 100$.
- 5. let $\ln 2 = x$ and $\ln 3 = y$. If $2^{t+1} = 3^{2t-1}$, then write t in terms of x and y.
- 6. If $y = \ln(x 3) + 1$, then write x in terms of y.
- 7. If $t = \frac{10^x 10^{-x}}{10^x + 10^{-x}}$, then write x in terms of t.
- 8. In the formula $P(t) = P_0 e^{kt}$, if $P(25) = \frac{1}{2}P_0$, then find P(75) in terms of P_0 .
- 9. If $\log_2 6x \log_2 3x = 2\log_2 k$, and x > 0, then find k.
- 10. Find the points of intersection of the graphs of $f(x) = e^{x^2}$ and $g(x) = (e^x)^2$.