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1 The Lagrange Basic Polynomials

Suppose f is de�ned on an interval [a; b] and we have n+1 points (called nodes) x0; x1; : : : ; xn 2
[a; b] such that a � x0 � x1 � : : : � xn � b: We want to �nd the polynomial Pn (x) of
degree at most n that interpolates f at the nodes x0; x1; : : : ; xn; that is

Pn (xk) = f (xk) ; k = 0; 1; : : : ; n:

We saw in the previous section how this can be done by solving a linear system of equa-
tions. The problem with the linear system is that its matrix (known as a Hilbert matrix)
is ill conditioned and the solution is very sensitive to representation errors. In this section
we will discuss an alternative way of constructing the polynomial Pn (x) : We begin by
introducing the basic Lagrange polynomials Ln;k; k = 0; 1; : : : ; n:
Suppose we want to construct a polynomial Qk (x) that satis�es the following condi-

tions:

Qk (xj) = 0; j 6= k; (1)

Qk (xk) = 1: (2)

We try a polynomial of the form

Qk (x) = c (x� x0) (x� x1) � � � (x� xk�1) (x� xk+1) (x� xn) :

So far Qk (x) satis�es the conditions (1) but its value at xk need not be 1: To make its
value at xk equal one we adjust the coe¢ cient c: This results in the equation

1 = Qk (xk) = c (xk � x0) (xk � x1) � � � (xk � xk�1) (xk � xk+1) (xk � xn)

which determines c as

c =
1

(xk � x0) (xk � x1) � � � (xk � xk�1) (xk � xk+1) (xk � xn)
:

Thus the polynomial Qk (x) is

Qk (x) =
(x� x0) (x� x1) � � � (x� xk�1) (x� xk+1) (x� xn)

(xk � x0) (xk � x1) � � � (xk � xk�1) (xk � xk+1) (xk � xn)
:
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To simplify the expression we use the product notation:

Qk (x) =

nY
j=0;j 6=k

(x� xj)

nY
j=0;j 6=k

(xk � xj)
:

De�nition 1 The Lagrange basic polynomial Ln;k (x) is de�ned to be Qk (x) ; k = 0; 1; : : : ; n:

From our discussion of how the polynomial Qk (x) was constructed we see that Ln;k (x)
has degree n; and it satis�es the conditions

Ln;k (xj) = �kj;

where �kj is the so called Kronecker delta and is de�ned by

�kj =

�
0; k 6= j
1; k = j

:

Example For the 6 nodes 0; 0:2; 0:4; :6; 0:8; 1 2 [0; 1] we have

L5;0 =
(x� 0:2) (x� 0:4) (x� 0:6) (x� 0:8) (x� 1)
(0� 0:2) (0� 0:4) (0� 0:6) (0� 0:8) (0� 1)

= �26: 042x5 + 78: 125x4 � 88: 542x3 + 46: 875x2 � 11: 417x+ 1:0;
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L5;1 =
x (x� 0:4) (x� 0:6) (x� 0:8) (x� 1)

0:2 (0:2� 0:4) (0:2� 0:6) (0:2� 0:8) (0:2� 1)
= 130: 21x5 � 364: 58x4 + 369: 79x3 � 160: 42x2 + 25:0x;
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L5;2 =
x (x� 0:2) (x� 0:6) (x� 0:8) (x� 1)

0:4 (0:4� 0:2) (0:4� 0:6) (0:4� 0:8) (0:4� 1)
= �260: 42x5 + 677: 08x4 � 614: 58x3 + 222: 92x2 � 25:0x;
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L5;3 =
x (x� 0:2) (x� 0:4) (x� 0:8) (x� 1)

0:6 (0:6� 0:2) (0:6� 0:4) (0:6� 0:8) (0:6� 1)
= 260: 42x5 � 625:0x4 + 510: 42x3 � 162: 5x2 + 16: 667x;
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L5;4 =
x (x� 0:2) (x� 0:4) (x� 0:6) (x� 1)

0:8 (0:8� 0:2) (0:8� 0:4) (0:8� 0:6) (0:8� 1)
= �130: 21x5 + 286: 46x4 � 213: 54x3 + 63: 542x2 � 6: 25x;

:
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L5;5 =
x (x� 0:2) (x� 0:4) (x� 0:6) (x� 0:8)
1 (1� 0:2) (1� 0:4) (1� 0:6) (1� 0:8)

= 26: 042x5 � 52: 083x4 + 36: 458x3 � 10: 417x2 + x:
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The following �gure shows all 6 polynomials plotted together.
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2 Lagrange Interpolating Polynomial

The polynomial Pn (x) of degree at most n which interpolates f at the nodes x0; x1; : : : ; xn
can be de�ned now with th help of the Lagrange basic polynomials as

Pn (x) =
nX
k=0

f (xk)Ln;k (x) : (3)
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Obseve that

Pn (xj) =

nX
k=0

f (xk)Ln;k (xj)

=
nX
k=0

f (xk) �kj = f (xj) ; j = 0; 1; : : : ; n:

Example The lagrange polynomial P5 (x) which interpolates the function f (x) = ln (1 + x)
at the nodes 0; 0:2; 0:4; 0:6; 0:8; 1 on the interval [0; 1] is given by

P5 (x) = ln (1)L5;0 + ln (1:2)L5;1 + ln (1:4)L5;2 + ln (1:6)L5;3 + ln (1:8)L5;4 + ln (2:0)L5;5

= ln (1:2)
�
130: 21x5 � 364: 58x4 + 369: 79x3 � 160: 42x2 + 25:0x

�
+ ln (1:4)

�
�260: 42x5 + 677: 08x4 � 614: 58x3 + 222: 92x2 � 25:0x

�
+ ln (1:6)

�
260: 42x5 � 625:0x4 + 510: 42x3 � 162: 5x2 + 16: 667x

�
+ ln (1:8)

�
�130: 21x5 + 286: 46x4 � 213: 54x3 + 63: 542x2 � 6: 25x

�
+ ln (2:0)

�
26: 042x5 � 52: 083x4 + 36: 458x3 � 10: 417x2 + x

�
= 0:9991x� 0:4891x2 + 0:2825x3 � 0:1290x4 + :02 96x5

The polynomial P5 (x) and the function ln (1 + x) over the interval [0; 1] are shown
on the same graph below.
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If we extend the graphs to outside the interval [0; 1] the functions start to depart
and the approximation is bad outside the nodes interval.
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The polynomial Pn (x) de�ned by equation (3) is called the Lgrange interpolating polyno-
mial. The next theorem shows that the Lgrange interpolating polynomial is unique.

Theorem 2 The Lgrange interpolating polynomial de�ned by equation (3) is unique.

Proof. Suppose Qn (x) is a polynomial of degree at most n which interpolates f at the
nodes x0; x1; : : : ; xn: Then, we have

Pn (xj) = f (xj) ;

Qn (xj) = f (xj) ; j = 0; 1; : : : ; n:

Let R (x) = Pn (x)�Qn (x) : Then R (x) is a polynomial of degree at most n: Furthermore,

R (xj) = Pn (xj)�Qn (xj) = 0; j = 0; 1; : : : ; n:

By the fundamental theorem of algebra, a polynomial of degree at most n cannot have
more than n roots unless it is identically zero. Since R (x) has n + 1 roots, we conclude
that R (x) � 0: Therefore, Pn (x) � Qn (x) � 0 and Pn (x) � Qn (x) :The Error Formula
for Lagrange Interpolation
If the function f has n+1 continuous derivatives on [a; b] ; we can prove the following

error formula which closely resembles the error formula for the Taylor polynomials.

Theorem 3 Suppose f 2 Cn+1 [a; b] and Pn is the Lagrange interpolating polynomial at
the nodes x0; x1; : : : ; xn: Suppose also that x 2 [a; b] is such that xm < x < xm+1 for some
m; where 0 � m < n: Then there is a number � 2 (x0; xn) such that

f (x)� Pn (x) =
f (n+1) (�)

(n+ 1)!
(x� x0) (x� x1) : : : (x� xn) :
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Proof. De�ne the function L (t) by

L (t) =
nY
j=0

(t� xj)
(x� xj)

and the function g (t) by

g (t) = f (t)� Pn (t)� [f (x)� Pn (x)]L (t)

Notice that L (t) is a polynomial of degree n+ 1; g 2 Cn+1 [a; b] ;

g (xk) = f (xk)� Pn (xk)� [f (x)� Pn (x)]L (xk) = 0; k = 0; 1; : : : ; n

and

g (x) = f (x)� Pn (x)� [f (x)� Pn (x)]L (x)
= f (x)� Pn (x)� [f (x)� Pn (x)] = 0:

Applying Roll�s theorem to the function g and the intervals [x0; x1] ; [x1; x2] ; : : : ; [xm; x] ; [x; xm+1] ; : : : ; [xn�1; xn] ;
we get that there exist �10 2 (x0; x1) ; �11 2 (x1; x2) ; : : : ; �1m 2 (xm; x) ; �1m+1 2 (x; xm+1) ; �1n 2
[xn�1; xn] such that

g0
�
�1k
�
= 0; k = 0; 1; : : : ; n:

Observe that we have x0 < �
1
0 < �

1
1 < : : : < �

1
m < �

1
m+1 < : : : < �

1
n < xn: Applying Roll�s

Theorem again to the function g0 and the intervals
�
�10; �

1
1

�
;
�
�11; �

1
2

�
; : : : ;

�
�1n�1; �

1
n

�
; we get

the there exist �20 2
�
�10; �

1
1

�
; �21 2

�
�11; �

1
2

�
; : : : ; �2n�1 2

�
�1n�1; �

1
n

�
such that

g00
�
�2k
�
= 0; k = 0; 1; : : : ; n� 1:

Continuing in this manner we ge that there exists a � = �n+10 2 (�n0 ; �n1 ) � (x0; xn) such
that

g(n+1) (�) = 0:

Now

g(n+1) (t) = f (n+1) (t)� [f (x)� Pn (x)] (n+ 1)!
nY
j=0

1

(x� xj)
:

Substituting t = � and simplifying we get

f (x)� Pn (x) =
f (n+1) (�)

(n+ 1)!

nY
j=0

(x� xj) :

The error formula

En (x) =
f (n+1) (�)

(n+ 1)!
(x� x0) (x� x1) : : : (x� xn)
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can be used to give a crude error estimate as follows. For xm < x < xm+1; the product
j(x� x0) (x� x1) : : : (x� xn)j can be estimated by

j(x� x0) (x� x1) : : : (x� xn)j � j(x� xm) (x� xm+1)j (b� a)n�1 :

The term j(x� xm) (x� xm+1)j = (x� xm) (xm+1 � x) has a maximum value (found using
calculus) of

(xm+1 � xm)2

4

and this maximum occures when

x =
xm+1 + xm

2
:

Therefore, we have

j(x� x0) (x� x1) : : : (x� xn)j �
(xm+1 � xm)2

4
(xn � x0)n�1

and

jEn (x)j �
��f (n+1) (�)��
(n+ 1)!

(xm+1 � xm)2

4
(xn � x0)n�1 :

Example Let us estimate the error of interpolating the function f (x) = ln (1 + x) by
the Lagrange polynomial P5 (x) at the nodes 0; 0:2; 0:4; 0:6; 0:8; 1:

jE5 (x)j �
��f (6) (�)��
6!

(0:2)2

4
(1� 0)4

=
1

6!

6!

(1 + �)6
� :01 � 0:01

This means that we should expect at least two decimal place accuracy in this ap-
proximation. The actual error (computed by taking max (abs (P5 (x)� ln (x))) over
the interval [0; 1]) is arround 10�5 so we actually have 5 decimal place accuracy.
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