Lagrange Interpolation

April 2, 2007

1 The Lagrange Basic Polynomials

Suppose f is defined on an interval [a, b] and we have n+1 points (called nodes) g, z1, ..., 2, €
la,b] such that a < xy < 27 < ... < x, < b We want to find the polynomial P, (z) of
degree at most n that interpolates f at the nodes xg, x1,...,z,, that is

Pn<$k):f($€k), k:O,l,...,n.

We saw in the previous section how this can be done by solving a linear system of equa-
tions. The problem with the linear system is that its matrix (known as a Hilbert matrix)
is ill conditioned and the solution is very sensitive to representation errors. In this section
we will discuss an alternative way of constructing the polynomial P, (). We begin by
introducing the basic Lagrange polynomials L, k =0,1,...,n.

Suppose we want to construct a polynomial Q) (z) that satisfies the following condi-
tions:

We try a polynomial of the form

Qr (2) = c(z —x0) (x — 1) -+ (T = Tp—1) (T — Tp) (T — ) -
So far @ (x) satisfies the conditions (1) but its value at z; need not be 1. To make its
value at x; equal one we adjust the coefficient c¢. This results in the equation

1= Q (wr) = c(xp — x0) (xp — 1) - (0, — Tp—1) (T — Tip1) (T — 20)

which determines ¢ as
1

(2k — o) (v — 1) -+ (w% — Tp1) (Th — Ta1) (T — Tn)

C =

Thus the polynomial Q (x) is

(x — o) (x —21) (v — 2p1) (T — Tp11) (T — )
(zr — w0) (vp — 1) -+ (2 — p1) (T — Tpp1) (Tp — Tn)

Qr (z) =

1



To simplify the expression we use the product notation:

n

| H (z — ;)
Qi () = 75

IT G-

=0,k

Definition 1 The Lagrange basic polynomial L, . (x) is defined to be Qx (), k=10,1,...,n.

From our discussion of how the polynomial @), (x) was constructed we see that L,, ()
has degree n, and it satisfies the conditions

L g (75) = 0pj,

where 0y; is the so called Kronecker delta and is defined by

0,k#Jj
6kj: ]_,k‘:] .

Example For the 6 nodes 0,0.2,0.4,.6,0.8,1 € [0, 1] we have

I — (x—=02)(z—04)(x—0.6) (z —0.8)(x — 1)
0T (0-02)(0—0.4)(0—0.6)(0—0.8)(0—1)
= —26.0422° + 78.125z" — 88. 54223 + 46.8752% — 11. 417z + 1.0,
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x(r—04)(x—0.6)(zr—0.8)(x—1)
0.2(0.2 —0.4) (0.2 —0.6) (0.2 —0.8) (0.2 — 1)
= 130.212° — 364. 58z + 369. 792% — 160. 4222 + 25.0z,

Ly, =
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z(x—0.2)(x—0.6)(x—08)(zr—1)
0.4(0.4—0.2) (0.4 —0.6) (0.4 —0.8) (0.4 — 1)
= —260.422° + 677. 08z — 614. 5823 + 222.922% — 25.0z,
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z(xr—0.2)(x—04)(x—08)(z—1)
0.6 (0.6 —0.2) (0.6 — 0.4) (0.6 — 0.8) (0.6 — 1)
= 260.422° — 625.02* + 510. 422% — 162. 522 + 16. 667,

Lss =



075 T

05T

025 T

0 0.25 05 0.75 1

025 7T
05T

075 T

z(x—0.2)(x—04)(x—0.6)(x—1)

L =
o4 0.8(0.8 —0.2) (0.8 —0.4) (0.8 — 0.6) (0.8 — 1)
= —130.212° 4+ 286. 462" — 213. 5423 + 63. 5422% — 6. 25z,
y 1257
N
075 T
057
025 T
0 T T T 1
0 025 05 0.75 1
X
z(x—0.2)(x—04)(x—0.6)(x—0.8)
L5,5

1(1-0.2)(1—-0.4)(1-0.6)(1-0.8)
= 26.0422° — 52.083z* + 36. 4582 — 10. 41722 + z.
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2 Lagrange Interpolating Polynomial

The polynomial P, (x) of degree at most n which interpolates f at the nodes zg, z1, . .., x,
can be defined now with th help of the Lagrange basic polynomials as

Py (@)=Y f(wx) Loy (2). (3)



Obseve that

n

Py (x;) = > f(wk) Lok (x;)

= > flaw) i =f(x;), j=01,....n

k=0

Example The lagrange polynomial Ps (x) which interpolates the function f (z) = In (1 + )
at the nodes 0,0.2,0.4,0.6,0.8,1 on the interval [0, 1] is given by

Pi(z) = In(1)Lso+1In(1.2) L5 +In(1.4) Ly +1n(1.6) Ls 3+ 1In(1.8) Ls 4 + In (2.0) L5 5
= In(1.2) (130.212° — 364. 582" + 369. 792° — 160. 422> + 25.0z)
+1n (1.4) (—260. 422° + 677. 082" — 614. 582° + 222.922° — 25.0z)
+1n (1.6) (260. 422° — 625.02" + 510. 422" — 162. 52° 4 16.667)
+1In (1.8) (—130. 212" 4 286.46x* — 213. 542 + 63.5422” — 6. 257)
+1n (2.0) (26.0422° — 52.083z* + 36.458z% — 10.4172* + z)
= 0.9991x — 0.48912” 4 0.28252° — 0.1290z* + .02 962"

The polynomial Ps (z) and the function In (1 + ) over the interval [0, 1] are shown
on the same graph below.
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If we extend the graphs to outside the interval [0, 1] the functions start to depart
and the approximation is bad outside the nodes interval.
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The polynomial P, (x) defined by equation (3) is called the Lgrange interpolating polyno-
mial. The next theorem shows that the Lgrange interpolating polynomial is unique.

Theorem 2 The Lgrange interpolating polynomial defined by equation (3) is unique.

Proof. Suppose @), (z) is a polynomial of degree at most n which interpolates f at the
nodes xg,x1,...,x,. Then, we have

Py (z;) = fl(z)),
Qn(z;) = f(zy), j=0,1,...,n.

Let R (z) = P, (z)— @, (). Then R (x) is a polynomial of degree at most n. Furthermore,
R(z;) =P, (xj) — Qun(z;) =0, j=0,1,...,n.

By the fundamental theorem of algebra, a polynomial of degree at most n cannot have
more than n roots unless it is identically zero. Since R (z) has n + 1 roots, we conclude
that R (z) = 0. Therefore, P, () — @, (z) = 0 and P, () = @, (x) .The Error Formula
for Lagrange Interpolation m

If the function f has n+ 1 continuous derivatives on [a, b] , we can prove the following
error formula which closely resembles the error formula for the Taylor polynomials.

Theorem 3 Suppose f € C"[a,b] and P, is the Lagrange interpolating polynomial at
the nodes g, x1, . .., T,. Suppose also that x € |a,b] is such that x,, < © < x4 for some
m, where 0 < m < n. Then there is a number & € (xo,x,) such that

I AGRA(S)

f(x) =P, (z) = CE (x —z0) (x—21) ... (x — xp) .



Proof. Define the function L (¢) by

and the function g (¢) by

Notice that L (t) is a polynomial of degree n + 1, g € C"*! [a, 1],

g(xr) = fxg) — Po(xp) = [f () = Py (z)] L(xx) =0, k=0,1,...,n

and
g(x) = [f(z)—Pu(z)—[f (x) = P, (2)] L(z)
= f(z) = Pu(z) = [f(z) — P (x)] = 0.
Applying Roll’s theorem to the function g and the intervals [zg, 1] , [21, 2] , . . ., [Tm, 2], [T, Tmsa] , - -
we get that there exist &5 € (29, 21),&] € (21, 22),...,&L € (T, 2) ,éfnﬂ € (z,Tmy1), € €

[,_1, %] such that
(&) =0 k=01,....n

Observe that we have o < £} < & < ... < &L < §}n+1 <...< ¢ <z, Applying Roll’s
Theorem again to the function ¢’ and the intervals [50, 51] [5%, 5;} Sy [5,11_1, f,ﬂ , we get

the there exist 2 € (56,51) & e (5%,5%) Y S = (§n 1,51) such that
g" (&) =0, k=0,1,...,n—1.

Continuing in this manner we ge that there exists a ¢ = &5 € (€5, €") C (w0, x,,) such
that

gt (&) = 0.

Now

n
The error formula

fm(g)

En (2) = (n+1)!

(x—x0) (x—21) ... (x — zp)

9 [l’n,1



can be used to give a crude error estimate as follows. For z,, < x < x,,.1, the product
|(x — x0) (x — 1) ... (z — x,)| can be estimated by

(2 —20) (z = 21) ... (& = 2)] < (& = @) (& = T | (b= )"

The term |(z — z,,,) ( — Zypy1)| = (¢ — 2) (X1 — ) has a maximum value (found using
calculus) of
(Tmt1 — xm)2
4

and this maximum occures when

xm+1+xm
r= ——.
2

Therefore, we have

|(33_x0)($—371)...(;17—xn)’<M

n—1
< 1 (xn, — o)

and )
‘f(n+1) (5)’ (xm—f—l - xm)
(n+1)! 4

| En (2)] <

(), — mo)”_l )

Example Let us estimate the error of interpolating the function f(z) = In(1+ x) by
the Lagrange polynomial Ps (x) at the nodes 0,0.2,0.4,0.6,0.8, 1.

/9 ©)](02)°
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|
= L_¢ x .01 <0.01

6! (1+¢)

|Bs (2)] < (1-0)"

This means that we should expect at least two decimal place accuracy in this ap-
proximation. The actual error (computed by taking max (abs (P5 () — In (x))) over
the interval [0, 1]) is arround 107° so we actually have 5 decimal place accuracy.



