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THE FUNDAMENTAL VARIATIONAL PRINCIPLE

Namely, because the shape of the whole universe is the

most perfect and, in fact, designed by the wisest creator,

nothing in all the world will occur in which no maximum or

minimum rule is somehow shining forth...

Leonhard Euler (1744)
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INTRINSIC NONSMOOTHNESS

is typically encountered in applications of modern variational
principles and techniques to numerous problems arising in pure
and applied mathematics particularly in analysis, geometry, dy-
namical systems (ODE,PDE), optimization, equilibrium, mechan-
ics, control, economics, ecology, biology, computers science...

REMARKABLE CLASSES OF NONSMOOTH FUNCTIONS

MARGINAL/VALUE FUNCTIONS

µ(x) := inf
{
ϕ(x, y)

∣∣∣ y ∈ G(x)
}

crucial in perturbation and sensitivity analysis, stability, and many
other issues. In particular, DISTANCE FUNCTIONS

dist(x;Ω) := inf
{
‖x− y‖

∣∣∣ y ∈ Ω
}

or generally ρ(x, z) := dist(x;F (z))

naturally appear via variational principles and penalization.
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INTRINSIC NONSMOOTHNESS (cont.)

MAXIMUM FUNCTIONS

f(x) = max
u∈U

g(x, u),

in particular, HAMILTONIANS in physics, mechanics, calculus

of variations, systems control, variational inequalities, etc.

NONSMOOTH/NONCONVEX SETS AND MAPPINGS

Parametric sets of feasible and optimal solutions in various

problems of equilibrium, optimization, dynamics

Preference and production sets in economic modeling

Reachable sets in dynamical and control systems

Sets of Equilibria and Equilibrium Constraints in physical,

mechanical, economic, ecological, and biological models
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SUBDIFFERENTIALS

of ϕ : Rn → R := (−∞,∞] with ϕ(x̄) <∞ should satisfy:

1) for convex functions ϕ reduces to

∂•ϕ(x̄) =
{
v
∣∣∣ ϕ(x)− ϕ(x̄) ≥ 〈v, x− x̄〉 for all x ∈ Rn

}
.

2) If x̄ is a local minimizer for ϕ, then 0 ∈ ∂•ϕ(x̄).

3) Sum Rule (Basic Calculus)

∂•(ϕ1 + ϕ2)(x̄) ⊂ ∂•ϕ1(x̄) + ∂•ϕ2(x̄).

4) Robustness

∂•ϕ(x̄) = Limsup
x
ϕ→x̄

∂•ϕ(x),

where LimsupF (x) :=
{
y
∣∣∣ ∃xk → x, yk → y with yk ∈ F (xk)

}
and x

ϕ→ x̄ : x→ x̄, ϕ(x) → ϕ(x̄).
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THE BASIC SUBDIFFERENTIAL

of ϕ : IRn → IR at x̄ [Mor-1976] is

∂ϕ(x̄) := Limsup
x
ϕ→x̄

∂̂ϕ(x)

where Fréchet/viscosity subdifferential of ϕ at x is defined by

∂̂ϕ(x) :=
{
v

∣∣∣∣ lim inf
u→x

ϕ(u)− ϕ(x)− 〈v, u− x〉
‖u− x‖

≥ 0
}
.

The basic subdifferential is minimal among all subdifferentials
satisfying 1)-4), nonempty

∂ϕ(x̄) 6= ∅ for Lipschitz functions,

while often nonconvex, e.g., ∂(−|x|)(0) = {−1,1}. Moreover, its
convexification, made for convenience, can dramatically worsen
the basic properties and applications.

5



VARIATIONAL GEOMETRY

The (basic) NORMAL CONE N(x̄;Ω) := ∂δ(x̄;Ω) to Ω at
x̄ ∈ Ω is equivalent to

N(x̄;Ω) = Limsup
x→x̄

[
cone(x−Π(x;Ω))

]
where Π(x;Ω) is the Euclidean projector. Then

∂ϕ(x̄) =
{
v
∣∣∣ (v,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)}.

The convexified normal cone

N(x̄;Ω) = clco N(x̄;Ω)

turns out to be a linear subspace for any nonsmooth Lipschitzian
manifolds. This happens, e.g., for graphs of locally Lipschitz
vector functions and maximal monotone operators that typically
occur in variational inequalities and complementarity problems.
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EXTREMALITY OF SET SYSTEMS

DEFINITION. x̄ ∈ Ω1∩Ω2 is a LOCAL EXTREMAL POINT

of the system of closed sets {Ω1,Ω2} in a normed space X if there

exists a neighborhood U such that for any ε > 0 there is a ∈ X

with ‖a‖ < ε satisfying

(Ω1 + a) ∩Ω2 ∩ U = ∅.

EXAMPLES:

—boundary point of closed sets

—local solutions to constrained optimization, multiobjective op-

timization, and other optimization-related problems

—minimax solutions and equilibrium points

—Pareto-type allocations in economics

—stationary points in mechanical and ecological models, etc.
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EXTREMAL PRINCIPLE

THEOREM. Let x̄ be a LOCAL EXTREMAL POINT for
the system of closed sets {Ω1,Ω2} in X.Then there exists a dual
element 0 6= x∗ ∈ X∗ such that

x∗ ∈ N(x̄;Ω1) ∩ (−N(x̄;Ω2)).

This is a VARIATIONAL counterpart of the separation theo-
rem for the case of nonconvex sets, which plays a fundamental
role in variational analysis and its applications.
PROOF. Perturbation techniques and special iterative proce-
dures+geometry of Banach/Asplund spaces.
SOME APPLICATIONS: Full Calculus for nonconvex subd-
ifferentials and normals;Metric regularity/Openess/Stability and
Optimality Conditions; Sensitivity Analysis, ODE and PDE Con-
trol, Economic and Mechanical Equilibria, Numerical Analysis...
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CODERIVATIVES OF MAPPINGS

Let F : X ⇒ Y be a set-valued mapping with (x̄, ȳ) ∈ gphF . Then
D∗F (x̄, ȳ): Y ∗ ⇒ X∗ defined by

D∗F (x̄, ȳ)(y∗) :=
{
x∗

∣∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )
}

is called the coderivative of F at (x̄, ȳ).

If F : X → Y is smooth around x̄, then

D∗F (x̄)(y∗) =
{
∇F (x̄)∗y∗

}
for all y∗ ∈ Y ∗,

i.e., the coderivative is a proper generalization of the classical
adjoint derivative. If F : X → Y is single-valued and locally Lips-
chitzian around x̄, then the scalarization formula holds:

D∗F (x̄)(y∗) = ∂〈y∗, F 〉(x̄).
ENJOY FULL CALCULUS!

9



CHARACTERIZATION OF METRIC REGULARITY

DEFINITION. A set-valued mapping F (·) is METRICALLY

REGULAR around (x̄, ȳ) ∈ gphF if there are neighborhoods U

of x̄, V of ȳ and positive numbers M , ε such that

dist(x, F−1(y)) ≤Mdist(y, F (x))

for all x ∈ U and y ∈ V with dist(y, F (x)) ≤ ε.

THEOREM. Let F : X ⇒ Y be an arbitrary set-valued mapping

of closed graph. Then it is METRICALLY REGULAR around

(x̄, ȳ) IF AND ONLY IF

kerD∗F (x̄, ȳ) =
{
0

}
.

Furthermore, the EXACT REGULARITY BOUND is

regF (x̄, ȳ) = ‖D∗F−1(ȳ, x̄)‖ = ‖D∗F (x̄, ȳ)−1‖.
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DISTANCE TO INFEASIBILITY AND CONDITIONING

Quantitative measuring the bounds of perturbations do not vi-
olate well-posedness: Eckart-Young, Renegar–the latter is mo-
tivated by the analysis of complexity of numerical algorithms.
Then Donchev, Lewis and Rockafellar:

RADIUS OF METRIC REGULARITY

radF (x̄, ȳ) := inf
g

{
‖g‖

∣∣∣∣ metric regularity fails for F + g

}
,

where the infimum is taken over linear bounded operators.

THE EXACT FORMULA FOR COMPUTING THE RADIUS:

radF (x̄, ȳ) =
1

regF (x̄, ȳ)
.

Great many applications to Sensitivity Analysis and Condi-
tioning in various constrained systems in mathematical program-
ming, equilibrium models, control, etc.
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FAILURE OF METR. REGULARITY FOR VARIATIONAL SYST.

Major classes of variational systems including solutions maps

to parametric variational/hemivariational inequalities, comple-

mentarity problems, KKT systems, and other generalized equa-

tions/equilibrium conditions are given in the subdifferential forms:

S1(x) =
{
y ∈ Y

∣∣∣∣ 0 ∈ f(x, y) + ∂
(
ψ ◦ g

)
(y)

}
,

S2(x) =
{
y ∈ Y

∣∣∣∣ 0 ∈ f(x, y) +
(
∂ψ ◦ g

)
(y)

}
.

THEOREM. Under general assumptions, metric regularity fails

for these classes of variational systems provided that ϕ is a lower

semicontinuous convex function or, more generally, prox-regular

function in both finite and infinite dimensions.
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MATHEMATICAL PROGRAMMING

Consider the nonsmooth NP problem:

minimize ϕ0(x) subject to ϕi(x) ≤ 0, i = 1, . . . ,m
ϕi(x) = 0, i = m+ 1, . . . ,m+ r
x ∈ Ω.

THEOREM (generalized Lagrange multipliers). Let ϕi be lo-

cally Lipschitzian and Ω be locally closed around an optimal

solution x̄. Then there are (λ0, . . . , λm+r) 6= 0 satisfying

λi ≥ 0, i = 0, . . . ,m, λiϕi(x̄) = 0, i = 1, . . . ,m,

0 ∈ ∂
(m+r∑
i=0

λiϕi

)
(x̄) +N(x̄;Ω).

Moreover, λ0 6= 0 (Normality) under appropriate Constraint

Qualification Conditions.
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DYNAMICAL SYSTEMS

governed by evolution inclusions

ẋ(t) ∈ F (x(t), t), t ∈ [a, b], x(a) = x0 ∈ X,
where ẋ stands for an appropriate time derivative and where
F : X×[a, b] ⇒ X is a set-valued is a set-valued mapping. This de-
scribes ordinary differential inclusions (for X = IRn) and also par-
tial differential inclusions and equations of parabolic, hyperbolic,
and mixed types. Important for qualitative theory of dynamical
system and numerous applications, e.g., to various economic,
ecological, biological, financial systems, climate research...

In particular, this covers parameterized control systems with

ẋ = g(x, u, t), u(·) ∈ U(x, t)

where the control region U(x, t) depends on time and state.
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DISCRETE APPROXIMATIONS

Euler’s finite difference (for simplicity)

ẋ(t) ≈
x(t+ h)− x(t)

h
, h→ 0,

Consider the mesh as N →∞

tj := a+ jhN , j = 0, . . . , N, t0 = a, tN = b, hN = (b− a)/N.

Discrete Inclusions

xN(tj+1) ∈ xN(tj) + hNF (xN(tj), tj)

with piecewise linear Euler broken lines.

Various Well-Posedness, Convergence, and Stability Issues
of Numerical and Qualitative Analysis in Finite-Dimensional
and Infinite-Dimensional Spaces.
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OPTIMAL CONTROL OF DIFFERENTIAL INCLUSIONS

minimize the cost functional

J[x] = ϕ
(
x(b)

)
subject to

ẋ(t) ∈ F (x(t), t) a.e. t ∈ [a, b], x(a) = x0,

x(b) ∈ Ω ⊂ IRn

where F : IRn ⇒ IRn is a Lipschitz continuous set-valued mapping,

Ω is a closed set, ϕ is a l.s.c. function.

This covers various open-loop and closed-loop control systems

with ODE dynamics and hard control and state constraints.
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EXTENDED EULER-LAGRANGE+MAXIMUM PRINCIPLE

THEOREM. Let x̄(·) be an optimal solution to the control

problem. Then one has:

Euler-Lagrange inclusion

ṗ(t) ∈ D∗F
(
x̄(t), ẋ(t)

)(
− p(t)

)
a.e.,

Weierstrass-Pontryagin maximum condition condition〈
p(t), ˙̄x(t)

〉
= max

v∈F (x̄(t))

〈
p(t), v

〉
a.e.,

transversality condition

−p(b) ∈ λ∂ϕ
(
x̄(b)

)
+N

(
x̄(b);Ω

)
with nontriviality condition

(
λ, p(·)

)
6= 0.

PROOF: DISCRETE APPROXIMATIONS.
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HAMILTONIAN CONDITION

THEOREM. Let the sets F (x) ⊂ IRn be convex. Then the

extended Euler-Lagrange inclusion is equivalent to the extended

Hamiltonian inclusion

ṗ(t) ∈ co
{
u

∣∣∣∣ (
− u, ẋ(t)

)
∈ ∂H

(
x̄(t), p(t)

)}
a.e.

in terms of the basic subdifferential of the (true) Hamiltonian

H(x, p, t) := sup
{〈
p, v

〉∣∣∣ v ∈ F (x, t)
}
,

which is intrinsically nonsmooth.
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SEMILINEAR EVOLUTION INCLUSIONS AND PDEs

minimize J[x] := ϕ(x(b)) subject to

mild solutions to the semilinear evolution inclusion

ẋ(t) ∈ Ax(t) + F (x(t), t), x(a) = x0

with the endpoint constraints

x(b) ∈ Ω ⊂ X,

where A is an unbounded generator of the C0 semigroup, i.e.,

x(t) = eA(t−a)x0 +
∫ t

a
eA(t−s)v(s) ds, t ∈ [a, b]

v(t) ∈ F (x(t), t), t ∈ [a, b]

in the sense of Bochner integration.

Cover PDE systems with parabolic and hyperbolic dynamics.
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