Lecture 8

Subdifferentiability

The function $F:V\longrightarrow \overline{\mathbb{R}}$ is called subdifferentiable at $u\in V$ if there exists a $u^*\in V^*$ such that $\forall v\in V, < u-v, u^*>+F(u)$ is a caf minorant of F. The set of all subgradients (may be empty) at u is denoted by $\partial F(u)$.

Proposition 1 $u^* \in \partial F(u)$ iff $F(u) + F^*(u^*) = \langle u, u^* \rangle$.

Proof. If $u^* \in \partial F(u)$

Taking the supremum over all $v \in V$, we get

$$F^*(u^*) \ge \langle u, u^* \rangle - F(u) \ge \sup_{v \in V} \langle v, u^* \rangle - F(v) \ge F^*(u^*)$$

This shows that $F(u) + F^*(u^*) = \langle u, u^* \rangle$.

Now if $F(u) + F^*(u^*) = \langle u, u^* \rangle$, then $F(u) + \langle v, u^* \rangle - F(v) \leq F(u) + F^*(u^*) = \langle u, u^* \rangle$. Hence

$$F(v) \ge \langle v - u, u^* \rangle + F(u)$$

Which implies that $u^* \in \partial F(u)$.

Proposition 2 $u^* \in \partial F(u)$, then $F^{**}(u) = F(u)$ and $u^* \in \partial F^{**}(u)$.

Proof. If $u^* \in \partial F(u)$, then $\langle v - u, u^* \rangle + F(u) \leq F^{**}(u) \leq F(v)$ (because from previous proposition, we have $F(u) + F^*(u^*) = \langle u, u^* \rangle$ also $\langle v - u, u^* \rangle + F(u) \leq F(v)$. Now

$$\langle v - u, u^* \rangle + F(u) = \langle v, u^* \rangle - \langle u, u^* \rangle + F(u) = \langle v, u^* \rangle + F^*(u^*) < F^{**}(u)$$

So $(v - u, u^*) + F(u) \le F^{**}(u) \le F(v)$

From this we conclude that $u^* \in \partial F^{**}(u)$. Furthermore, at v = u, we have

$$F(u) < F^{**}(u) < F(u) \Rightarrow F^{**}(u) = F(u)$$

Now if $F^{**}(u) = F(u)$, then $\partial F(u) = \partial F^{**}(u)$.

$$\begin{array}{lcl} \partial F(u) & = & \{u^* \in V^* : F(u) + F^*(u) = < u, u^* > \} \\ & = & \{u^* \in V^* : F(u) + F^*(u) \le < u, u^* > \} \\ & = & \{u^* \in V^* : F^*(u) - < u, u^* > < F(u) \} \end{array}$$

Since $F^* \in \Gamma(V^*)$ (hence F^* is lsc and convex), then $\partial F(u)$ is closed and convex and $\sigma(V^*, V)$ closed.

Theorem 3 If $F: V \longrightarrow \overline{\mathbb{R}}$ is convex, continuous and finite at $u \in V$, then $\partial F(v) \neq \phi$ for all $v \in \widehat{domF}$. In particular $\partial F(u) \neq \phi$.

Proof.

- 1. $\overrightarrow{\mathrm{dom}F} \neq \phi$, F is continuous on $\overrightarrow{\mathrm{dom}F}$ and is proper over V.
- 2. $\widetilde{\operatorname{epi} F} \neq \phi$ ($u \in \widetilde{\operatorname{dom} F}$, F is bounded in a neighbourhood \mathcal{O}_u i.e. $F(v) \leq m$ for all $v \in \mathcal{O}_u$ that means $\mathcal{O}_u \times (m+\epsilon,\infty) \in \operatorname{epi} F$).

- 3. The set of points $(u, F(u)) \forall u \text{dom} F$ are boundary points of epi F. $\text{epi} F = \overbrace{\text{epi} F}^{\circ} + \text{bd}(\text{epi} F)$.
- 4. (u, F(u)) is a support point for epiF for each $u \in \text{dom} F$.
- 5. Let $v \in \widehat{\text{dom} F}$. Since (v, F(v)) is a support point for epiF, then there is a hyperplane H:

$$\langle w, u^* \rangle + \alpha a + \beta = 0$$

such that $(v, F(v)) \in H$ and $\langle w, u^* \rangle + \alpha a + \beta \ge 0$ for all $(w, a) \in \operatorname{epi} F$.

$$(v, F(v) \in H \Rightarrow \beta = -\langle v, u^* \rangle - \alpha F(v)$$

So H is

$$\langle w - v, u^* \rangle + \alpha (a - F(v)) = 0$$

 α must be positive; take \bar{a} sufficiently large then $(v,\bar{a})\in \stackrel{\circ}{\operatorname{epi} F}$ So

$$\alpha(\bar{a} - F(v)) \ge 0 \Rightarrow \alpha \ge 0$$

Assume that $\alpha = 0$. Then $\langle w, u^* \rangle + \beta = 0$ for all $\langle w, a \rangle \in H$.