Lecture 4

Continuity of Convex Function

PROPOSITION 1

 $F: V \longrightarrow \overline{R}$, If F is Convex and bounded above in a nbhd of a point $u \in V$, then F is continuous at u.

Proof. Assume u = 0, and F(0) = 0, let W be nbhd of 0 and F is bounded by $a < \infty$ on W. Let $W_1 = W \cap -W$, let $\epsilon > 0$ be given, let $v \in \epsilon W_1$.

$$F(v)=F(\frac{\epsilon v}{\epsilon})\leq \epsilon F(\frac{v}{\epsilon})\leq \epsilon a,$$

also, $-v \in W_1$

$$\begin{split} 0 &= \frac{1}{2}v - \frac{1}{2}v \\ 0 &= F(0) \leq \frac{1}{2}F(v) + \frac{1}{2}F(-v) \Longrightarrow \\ -F(v) &\leq F(-v) = F(\epsilon \frac{-v}{\epsilon}) \leq \epsilon F(\frac{-v}{\epsilon}) \leq \epsilon a, \end{split}$$

then

$$|F(v)| \leq \epsilon a \implies F$$
 is continuous at 0.

PROPOSITION 2

Let $F: V \to \overline{R}$ be a convex function, TFAE

(i) \exists an open, non-empty $O \subseteq V$, s.t. F is bounded above (by $a < \infty$) on V and $F(O) \neq \{-\infty\}$.

(ii) $\widehat{domF} \neq \phi$, **F** is continuous and proper on \widehat{domF} .

Proof. Clearly (ii) \Longrightarrow (i). Conversely for (i) \Longrightarrow (ii), $\widehat{domF} \neq \phi$ since $O \subseteq domF$. Let $u \in \widehat{domF}$ and choose $v \in O$ s.t. $|F(v)| < \infty$. since u is a internal point of the convex set \widehat{domF} , there exists a $w_1 \in \widehat{domF}$ s.t. $u \in (w_1, v)$

$$u = \alpha w_1 + (1 - \alpha)v \in \alpha w_1 + (1 - \alpha)O,$$

let $z \in \alpha w_1 + (1 - \alpha)O$

$$z = \alpha w_1 + (1 - \alpha) z_2$$
 where $z_2 \in O$,

$$F(z) \le \alpha F(w_1) + (1-\alpha)F(z_2) \le \alpha F(w_1) + (1-\alpha)a$$

therefore F is bounded above on the open nbhd $\alpha w_1 + (1 - \alpha)O$ of u. Then F is continuous at u.

COROLLARY 3

 $F: V \to R$ convex, V is finite dimension, then F is continuous on \widehat{domF} .

Proof. If $\widehat{domF} \neq \phi$, then \widehat{domF} contains an interior point. \widehat{domF} contains (n + 1) affinely independent vectors $(u_1, u_2, ..., u_{n+1})$. For $u \in \widehat{domF}$, there exists an open set of the form $I_1 \times I_2 \times ... I_n$, u can be written as $u = \sum_{i=1}^{n+1} \lambda_i u_i$ s.t. $0 \le \lambda_i \le 1$ and $\sum_{i=1}^{n+1} \lambda_i = 1$, then

$$F(u) \le \sum_{i=1}^{n+1} \lambda_i F(u_i) \le \sum_{i=1}^{n+1} F(u_i),$$

therefor F is bounded above on a nbhd of u.

COROLLARY 4

Let V be a normed space, $F: V \to \overline{R}$ is a proper convex function. TFAE:

- (i) \exists an open set $O \subseteq V$ on which F is bounded in O.
- (ii) $\widehat{domF} \neq \phi$, and F is locally Lipschitz on \widehat{domF} .