Lecture 3

Recall that a function $F: V \longrightarrow \overline{I\!\!R}$ is lower semicontinuous if

$$\liminf_{u \to \bar{u}} F(u) \ge F(\bar{u})$$

LEMMA 1

F is lsc iff $S_a = \{u \in V : F(u) \le a\}$ is closed in V.

Proof. The necessary condition was done in the previous lecture. For sufficient condition, suppose that S_a for all $a \in \mathbb{R}$ and let $\bar{u} \in V$ and $a = \liminf_{u \to \bar{u}} F(u)$.

<u>Case 1</u>: If $a = \infty$ then nothing to prove.

<u>Case 2</u>: If a is finite $(||a|| < \infty)$, take a sequence $\{u_n\}$ such that $u_n \to \overline{u}$. For each k, we can find n_k such that

$$F(u_{n_k}) \le a + \frac{1}{k}$$

these $u_{n_k} \in S_{a+\frac{1}{L}}$ and we have

$$u_{n_k} \in \bigcap_{i=1}^k S_{a+\frac{1}{i}}$$

and since $\bigcap_{i=1}^{k} S_{a+\frac{1}{2}}$ is closed and $u_{n_k} \to \bar{u}$ then

$$u \in \bigcap_{i=1}^{\infty} S_{a+\frac{1}{i}} = S_a$$

 $\therefore F(\bar{u}) \le a = \liminf_{u \to \bar{u}} F(u)$ <u>Case 3</u>: If $a = -\infty$ consider $S_n = \{u \in V : F(u) \le -n\}$.

PROPOSITION 2

F is lsc iff epiF is closed.

Proof. Let $\phi: V \times \mathbb{R} \longrightarrow \overline{\mathbb{R}}$ be defined by

$$\phi(u,a) = F(u) - a$$

Now, let $(u_n, a_n) \to (u, a)$; that is $u_n \to u$ and $a_n \to a$. Then

$$\liminf \phi(u_n, a_n) = \liminf F(u_n) - a_n \ge F(u) - a = \phi(u, a)$$

So $\phi(u, a)$ is lsc, then by previous lemma the set $\{(u, a) : \phi(u, a) \leq \alpha\}$ is closed for each $\alpha \in \overline{\mathbb{R}}$. In particular, if $\alpha = 0$, the set

$$\{(u,a): \phi(u,a) \le 0\} = \{(u,a): F(u) \le a\}$$

is closed; which is the epigraph of f. Now suppose that epiF is closed. Then the set

$$\{(u,a) \in V \times I\!\!R : \phi(u,a) \le r\} = \{(u,a) \in V \times I\!\!R : F(u) \le a + r\} = \{(u,a) \in V \times I\!\!R : F(u) \le a\} - \{(0,r) : r \in I\!\!R\}$$

is closed. Therefore, ϕ is lsc. It remains to show that F is lsc if ϕ is. For this let $\{u_n\}$ be a sequence such that $u_n \to \overline{u}$ and consider

$$\liminf_{u_n \to \bar{u}} F(u_n) - a = \liminf F(u_n) - \liminf a = \liminf (F(u_n) - a) = \liminf \phi(u_n, a) \ge \phi(u, a) = F(u) - a$$

Therefore F is lsc.

LEMMA 3

If $(F_i)_{i \in I}$ is a family of lsc functions, then $F(u) = \sup_{i \in I} F_i(u)$ is as well lsc.

Proof. Claim: $epiF = \bigcap epiF_i$. To show this,

So F is lsc.

DEFINITION 4

A function \overline{F} is called the lsc regularization of F if it is the greatest lsc minorant of F (i.e. $\overline{F}(u) \leq F(u)$ for all $u \in V$).

THEOREM 5 If $F: V \longrightarrow \overline{I\!R}$. Then

(a) $epi\bar{F} = \overline{epiF}$.

(b) $\overline{F}(u) = \liminf F(u)$.

Proof.

(a) Read the book.

(b) Let $(u, a) \in epi\overline{F}$, then $(u, a) \in \overline{epiF}$ and there exists a sequence (u_n, a_n) in epiF such that $(u_n, a_n) \leftarrow (u, a)$. Now for each n we have $\overline{F}(u_n) \leq F(u_n) \leq a_n$ and

 $\bar{F}(u) \le \liminf \bar{F}(u_n) \le \liminf F(u_n) \le \liminf a_n = a = \bar{F}(u)$

Therefore $\overline{F}(u) = \liminf F(u)$ as desired.

COROLLARY 6

The function $F: V \longrightarrow \overline{\mathbb{R}}$ is lsc and convex iff *F* is weakly lsc and convex.

Proof.

F is lsc and convex $\Leftrightarrow epiF$ is convex and closed $\Leftrightarrow epiF$ is the intersection of all half spaces containing it. $\Leftrightarrow epiF$ is weakly lsc and convex. $\Leftrightarrow F$ is weakly lsc and convex.

which concludes the proof. \blacksquare

PROPOSITION 7

If $F: V \longrightarrow \overline{\mathbb{R}}$ is lsc and convex and $F(\overline{u}) = -\infty$ for some $\overline{u} \in V$, then F can not take any finite value.

Proof. Assume $|F(u)| < \infty$. Let $u_n = \alpha_n \bar{u} + (1 - \alpha_n)u, \alpha_n \leftarrow 0$ then

 $F(u_n) = F(\alpha_n \bar{u} + (1 - \alpha_n)u) \le \alpha_n F(\bar{u}) + (1 - \alpha_n)F(u) = -\infty$

which is a contradiction. \blacksquare