Lecture 21

Applications of Duality to the calculus of varitions

Preliminaries

Let $\Omega \subseteq \mathbb{R}^n$ be open, sometimes we require regularity on Ω .

Regularity: Ω is said to be of class C^r if the boundary Γ is an r-times continuously differential maiifold of dimention (n-1) and Ω lies locally in one side of Γ .

For $x \in \Gamma$, $\nu(x) = (\nu_1(x), \nu_2(x), ..., \nu_n(x))$ will denote the outward normal to Ω .

Differentiation, Multiindex Notation.

$$\begin{aligned} &\text{for } j = (j_1, j_2, ..., j_n) \in \mathbb{N}^n, \\ &D^j u = D^j D^{j_2} ... D^{j_n} u = \frac{\partial^{|j|}}{\partial x_1^{j_1} \partial x_2^{j_2} ... \partial x_n^{j_n}} \text{ where } |j| = j_1 + j_2 + ... + j_n. \\ &\text{Examle: let } j = (1, 2, 4, 0) \in \mathbb{N}^4, \\ &D^j u = \frac{\partial^7 u}{\partial x_1 \partial x_2^2 \partial x_3^4} \end{aligned}$$

$$D^j u = \frac{\partial^i u}{\partial x_1 \partial x_2^2 \partial x_3^4}$$

Remark:
$$D^{(0,0,\ldots,0)} = I$$

Space $L^{\alpha}(\Omega), 1 \leq \alpha < \infty$

$$L^{\alpha}(\Omega) = \left\{ u : \Omega \longrightarrow \mathbb{R} : \int\limits_{\Omega} \left| u(x) \right|^{\alpha} dx < \infty \right\} \text{is a Banach space under the norm } \left\| u \right\|_{L^{\alpha}(\Omega)} = \left(\int\limits_{\Omega} \left| u(x) \right|^{\alpha} dx \right)^{\frac{1}{\alpha}}.$$
 Space $L^{\infty}(\Omega)$

$$L^{\infty}(\Omega) = \left\{ u : \Omega \longrightarrow \mathbb{R} : Ess. \sup_{x \in \Omega} |u(x)| < \infty \right\} \text{ is a Banach space under the norm } \|u\|_{L^{\infty}(\Omega)} = Ess. \sup_{x \in \Omega} |u(x)|$$

The Dual spaces of $L^{\alpha}(\Omega)$

$$(L^{\alpha}(\Omega))^* = L^{\alpha'}(\Omega)$$
 where $\frac{1}{\alpha} + \frac{1}{\alpha'} = 1$

The Buth spaces of
$$L'(\Omega)$$
 where $\frac{1}{\alpha} + \frac{1}{\alpha'} = 1$
Special case: if $\alpha = 2 \Longrightarrow \alpha' = 2, L^2(\Omega)$ is a Hilbert space with inner product $\langle u, v \rangle = \int_{\Omega} u(x)v(x)dx$

The Soblev Spaces $\overset{m,\alpha}{w}(\Omega),\overset{m,\alpha}{w_0}(\Omega)$ where $1\leq \alpha<\infty$ and $m\geqslant 1$ is an integer.

$$\overset{m,\alpha}{w}(\Omega) = \left\{u \in L^{\alpha}(\Omega): D^k u \in L^{\alpha}(\Omega), |k| \leq m\right\}$$
 is a Banach Space under the norm $\|u\|_{\overset{m,\alpha}{w}(\Omega)} = \left(\sum_{|j| \leq m} \int\limits_{\Omega} \left|D^j u(x)\right|^{\alpha} dx\right)^{\frac{1}{\alpha}}$

 $\overset{m,\alpha}{w_0}(\Omega)$ is the closure of $C_0^\infty(\Omega)$ in the norm of $\overset{m,\alpha}{w}(\Omega)$.

The Trace Operator : suppose $\Omega \in C^{m+2}$

The operator
$$\gamma:(\gamma_0,\gamma_1,...,\gamma_{m-1}):\overset{m,\alpha}{w}(\Omega)\longrightarrow L^{\alpha}(\Gamma)$$
 defined by

The operator
$$\gamma: (\gamma_0, \gamma_1, ..., \gamma_{m-1}): \overset{m}{w}(\Omega) \longrightarrow L^{\alpha}(\Gamma)$$
 defined by
$$\gamma_0 u = u|_{\Gamma}, \gamma_1 u = \frac{\partial u}{\partial \nu}|_{\Gamma}....\gamma_{n-1} u = \frac{\partial^{m-1} u}{\partial \nu^{m-1}}|_{\Gamma} \text{where } \frac{\partial u}{\partial \nu} = \nabla u.\nu|_{\Gamma} \text{and } \frac{\partial^k u}{\partial \nu^k} = \frac{\partial}{\partial \nu} \frac{\partial^{k-1} u}{\partial \nu^{k-1}}|_{\Gamma} = \nabla \left(\frac{\partial^{k-1} u}{\partial \nu^{k-1}}\right).\nu|_{\Gamma} \text{is called the Trace Operator.}$$

 γ is linear and continuous operator, also $Ker \; \gamma = \overset{m,\alpha}{w_0}(\Omega)$

Poincare' Inequality (assume Ω to be bounded)

For all $u \in \overset{1,\alpha}{w_0}(\Omega)$, $\|u\|_{L^{\alpha}(\Omega)} \leq c \|D^i u\|_{L^{\alpha}(\Omega)}$ where c is a constant depends on Ω and α . i.e $c(\Omega,\alpha)$. Green's Formula (Integration by Parts)

let
$$u \in {}^{1,\alpha}_{w}(\Omega)$$
 and $v \in {}^{1,\alpha'}_{w}(\Omega)$, then $\int_{\Gamma} uv\nu_i d\Gamma = \int_{\Omega} (uD_iv + vD_iu) dx$ (1) where ν_i is the i_{th} component of ν .

if we replace
$$v$$
 by $D_i v$ in (1)

if we replace
$$v$$
 by $D_i v$ in (1)
$$\int\limits_{\Gamma} u \, D_i v \, \nu_i d\Gamma = \int\limits_{\Omega} \left(u D_i^2 v + D_i v D_i u \right) dx \text{ , sum for } i = 1, 2, ..., n \text{, we get } \int\limits_{\Gamma} u \, \frac{\partial v}{\partial \nu} d \, \Gamma = \int\limits_{\Omega} \left(u \, \triangle \, v + \nabla u . \nabla v \right) dx$$
 also if interchanged u and v we get $\int\limits_{\Gamma} v \, \frac{\partial u}{\partial \nu} d \, \Gamma = \int\limits_{\Omega} \left(v \, \triangle \, u + \nabla u . \nabla v \right) dx$ subtracting we get, $\int\limits_{\Gamma} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) dv$

$$\Gamma = \int_{\Omega} (u \triangle v - v \triangle u) dx$$

also, replace
$$v$$
 by v_i in (1) $\mathbf{v} \Longrightarrow \int_{\Gamma} u \ v_i \ d\Gamma = \int_{\Omega} \left(u D_i v_i + v_i D_i u \right) dx$ or $\int_{\Gamma} u \ v \cdot \nu d\Gamma = \int_{\Omega} \left(u \nabla \cdot v + v \cdot \nabla u \right) dx$.