Lecture 17

Summery

$$P: \inf_{u \in v} F(u)$$

$$\Phi: V \times Y \longrightarrow \overline{R} \text{ such that } \Phi(u,0) = F(u)$$

$$P: \inf_{u \in v} \Phi(u,0)$$

 $u \in v$ The dual problem

$$P: \sup_{\substack{p \in y \\ p \in y}} \Phi(0, p)$$

$$Sup P < \inf P$$

$$-\Phi(0, p)^* \le \sup_{n \to \infty} P \le \inf_{n \to \infty} P \le \inf_{n \to \infty} P \le \Phi(u, 0) \Rightarrow \Phi(u, 0) + \Phi(0, p)^* \ge 0$$

- $h(p) = \inf_{u \in v} \Phi(u, p)$ If $h(0) \in \mathbb{R}$ and h is lwoer semicontinuous at $0 \Rightarrow P$ is normal
- P is normal \Leftrightarrow inf $P = \sup_{n=0}^{\infty} p \Leftrightarrow_{n=0}^{\infty} p$ is normal
- $h(0) \in \mathbb{R}$, $\partial h(0) \neq \Phi \Longrightarrow \mathbf{P}$ is stable
- P is stable iff $\stackrel{*}{P}$ is normal and has some solutions
- the set of solution of $\stackrel{*}{P}$ conicides with $\partial \stackrel{**}{h}(0)$
- P, P are normal and have same solutions $\Leftrightarrow P$ and P are stable $\Leftrightarrow P$ is stable and has solutions.

Criterion for stability

 Φ is convex, $h(0)\in\mathbb{R}$, $\Phi(u,.)$ bounded above in a nbhd of 0 $\Longrightarrow P$ is stable $h(p)\leq\Phi(u,p)$

Criterion for existence

V is a reflexive Banach space, $\Phi(.,0)$ is coercive $\Longrightarrow P$ has a solution

Extremality relation and Existence

Lemma1: $\overline{u} \in V$ is a solution of P and $\overset{*}{\overline{p}}$ is a solution of $\overset{*}{P}$ and $\inf P = \sup \overset{*}{P}$ iff $\Phi(\overline{u},0) + \overset{*}{\Phi}(0,\overline{\overline{p}}) = 0$ Proof: if $\overline{u} \in V$ is a solution of P and $\overset{*}{\overline{p}}$ is a solution of $\overset{*}{P}$ and $\inf P = \sup \overset{*}{P}$, then $-\overset{*}{\Phi}(0,\overline{\overline{p}}) = \sup \overset{*}{P}$ iff $P = \Phi(\overline{u},0) \Longrightarrow \Phi(\overline{u},0) + \overset{*}{\Phi}(0,\overline{\overline{p}}) = 0$ conversly assume $\Phi(\overline{u},0) + \overset{*}{\Phi}(0,\overline{\overline{p}}) = 0$ for some $\overline{u} \in V$ and some $\overset{*}{\overline{p}} \in \overset{*}{Y}$ then $-\overset{*}{\Phi}(0,\overline{\overline{p}}) < \sup \overset{*}{P} < \inf P < \Phi(\overline{u},0) = -\overset{*}{\Phi}(0,\overline{\overline{p}})$

 $-\Phi(0,\overline{p}) \leq \sup P \leq \inf P \leq$ and hence, the result is obtained.

Lagrangians and Saddle points

Definition: $L: V \times \overset{*}{Y} \longrightarrow \overline{\mathbb{R}}$ defined by $-L(u, \overset{*}{P}) = \underset{p \in Y}{Sup} \left\langle p, \overset{*}{p} \right\rangle - \Phi(u, p)$ is called the Lagrangian .

Note:
$$-L(u, \overset{*}{P}) = \overset{*}{\Phi_u}(\overset{*}{p})$$
 where $\Phi_u(p) = \Phi(u, p)$

Lemma

1- for $u \in V, L(u, .)$ is concave and u.s.c.

2- if Φ is convex, then for any $\stackrel{*}{p} \in \stackrel{*}{Y}, L(., \stackrel{*}{P})$ is convex

Proof: (part 2)

$$L(\lambda u + (1-\lambda)v, \overset{*}{p}) = \inf_{p \in Y} -\left\langle p, \overset{*}{p} \right\rangle + \Phi((\lambda u + (1-\lambda)v, p) \leq -\left\langle \lambda p + (1-\lambda)q, \overset{*}{p} \right\rangle + \Phi((\lambda u + (1-\lambda)v, \lambda p + (1-\lambda)q) \leq \lambda (-\left\langle p, \overset{*}{p} \right\rangle + \Phi(u, p)) + (1-\lambda)(-\left\langle q, \overset{*}{p} \right\rangle + \Phi(u, q))$$
 fix q and take the inf over $p \Longrightarrow$

$$L(\lambda u + (1 - \lambda)v, \overset{*}{p}) \le \lambda L(u, \overset{*}{p}) + (1 - \lambda)(-\langle q, \overset{*}{p} \rangle + \Phi(u, q))$$

now take inf over $q \Longrightarrow$

 $L(\lambda u + (1-\lambda)v, \overset{*}{p}) \leq \lambda L(u, \overset{*}{p}) + (1-\lambda)L(v, \overset{*}{p})$ and hence, $L(., \overset{*}{p})$ is convex.

$$\stackrel{*}{P}$$
 in terms of L

$$\Phi(\overset{*}{u},\overset{*}{p}) = \sup_{u \in v, p \in Y} \left\langle u, \overset{*}{u} \right\rangle + \left\langle p, \overset{*}{p} \right\rangle - \Phi(u, p)$$

$$\overset{*}{\Phi}(0,\overset{*}{p}) \ = \ \sup_{u \in V} \sup_{p \in Y} \left\langle p,\overset{*}{p} \right\rangle - \Phi(u,p) \ = \ \sup_{u \in V} \ - \ L(u,\overset{*}{p}) \ = \ -\inf_{u \in V} L(u,\overset{*}{p}) \ \Longrightarrow \ -\overset{*}{\Phi}(0,\overset{*}{p}) \ = \ \inf_{u \in V} L(u,\overset{*}{p}) \ \Longrightarrow \ \overset{*}{P} \ :$$

$$\sup_{\stackrel{*}{p}\in\stackrel{*}{Y}}\inf_{u\in V}L(u,\stackrel{*}{p})$$

P in terms of L

$$\Phi(u,0) = \Phi_u(0) = \sup_{\stackrel{*}{p} \in \stackrel{*}{Y}} \left\langle 0, \stackrel{*}{p} \right\rangle - \Phi_u^*(\stackrel{*}{p}) = \sup_{\stackrel{*}{p} \in \stackrel{*}{Y}} - \Phi_u^*(\stackrel{*}{p}) = \sup_{\stackrel{*}{p} \in \stackrel{*}{Y}} L(u,\stackrel{*}{p}) \Longrightarrow P : \inf_{\stackrel{u \in V}{p} \in \stackrel{*}{Y}} \operatorname{sup} L(u,\stackrel{*}{p})$$
 Definition: (Saddle point)

 $(\overline{u}, \overline{p}) \in V \times Y$ is called a saddle point of L if $L(\overline{u}, p) \leq L(\overline{u}, \overline{p}) \leq L(u, \overline{p})$ for all $u \in V, p \in Y$.

Lemma2: $(\overline{u}, \overline{p}) \in V \times Y$ is called a saddle point of L iff \overline{u} is a solution of P and \overline{p} is a solution of \overline{P} and $\inf P = \sup \tilde{P}$

Proof:

(\$\iffty\$)assume
$$(\overline{u}, \overline{p})$$
 is a saddle point $\Longrightarrow \Phi(\overline{u}, 0) = \sup_{\stackrel{*}{p} \in \mathring{Y}} L(\overline{u}, p) \le L(\overline{u}, p) \le \lim_{u \in V} L(u, p) = -\Phi(0, p) \Longrightarrow \Phi(\overline{u}, 0) + \lim_{\stackrel{*}{p} \in \mathring{Y}} L(u, p) = \lim_{u \in V} L(u, p) = \lim$

$$\Phi(0, \overline{p}) < 0 \text{ but } \Phi(\overline{u}, 0) + \Phi(0, \overline{p}) \geqslant 0$$

$$\Longrightarrow \Phi(\overline{u},0) + \overset{*}{\Phi}(0,\frac{*}{\overline{p}}) = 0$$
 and we get the extremality condition, so $\inf P = \sup \overset{*}{P}$.

 (\Leftarrow) assume \overline{u} is a solution of P and $\frac{*}{p}$ is a solution of P and $\inf P = \sup_{n} P$

$$\Phi(\overline{u},0) = \sup_{\stackrel{*}{p} \in \stackrel{*}{Y}} L(\overline{u},\stackrel{*}{p}) \geqslant \inf_{u \in V} L(u,\stackrel{*}{\overline{p}}) = -\stackrel{*}{\Phi}(0,\stackrel{*}{\overline{p}})$$

 $L(u,\overline{\overline{p}})\geqslant \inf_{u\in V}L(u,\overline{\overline{p}})=L(\overline{u},\overline{\overline{p}})=\sup_{\stackrel{*}{p}\in \stackrel{*}{Y}}L(\overline{u},\overline{p})\geqslant L(\overline{u},\overline{p}) \text{ and hence, } (\overline{u},\overline{\overline{p}}) \text{ is a saddle point.}$