Lecture 16

(Stable Problems)

Definition 1 Problem P is called stable if $h(0) \in \mathbf{R}, \partial h(0) \neq \phi$.

Lemma 2 The set of solution of \mathbf{P}^* coincides with $\partial h^{**}(0)$.

Proof. Suppose p^* is a solution of \mathbf{P}^* , then

$$-h^*(p^*) = -\Phi(0, p^*) = \sup_{q^* \in Y} -\Phi(0, q^*) = h^{**}(0).$$

Fix $p \in Y$, then,

$$\sup_{q^* \in Y} < p, q^* > -h^*(q^*) \ge h^*(p^*) + < p^*, p >$$

i.e.:

$$h^{**}(p) \ge -h^{*}(p^{*}) + \langle p^{*}, p \rangle = h^{**}(0) + \langle p^{*}, p \rangle$$

Then, $p^* \in \partial h^{**}(0)$. On the other hand, let $p^* \in \partial h^{**}(0)$,then

$$h^{**}(p) \ge h^{**}(0) + \langle p^*, p \rangle \quad \forall v \in V$$

$$-h^{**}(0) \ge \langle p^*, p \rangle - h^{**}(p)$$
$$-h^{**}(0) \ge h^{***}(p^*) = h^*(p^*)$$
$$h^{**}(0) \le -h^*(p^*)$$
$$\sup -h^*(q^*) \le -h^*(p^*)$$

Therefore,

$$-h^*(p^*) = \sup -h^*(q^*) \qquad q^* \in Y$$

Then, p^* is a solution of \mathbf{P}^* .

Proposition 3 P is stable iff P is normal and P^* has a solution.

Proof. Suppose P is stable, then P is normal (since $\partial h(0) \neq 0 \implies h$ is *l.s.c* at 0). Furthermore, $p^* \in \partial h(0) = \partial h^{**}(0)$, therefore, p^* is a solution of \mathbf{P}^* by previous lemma. Conversely if P is normal and \mathbf{P}^* has a solution p^* , then

 $p^* \in \partial h^{**}(0) = \partial h(0),$

since h is l.s.c at 0. Then P is stable.

Proposition 4 The Following Conditions are equivalent:
(I) P and P*are normal and have some solutions,
(II) P and P*are stable,
(III) P is stable and has some solutions.

Proof. (I) \Rightarrow (II),

Assume (I), \mathbf{P}^* is normal and \mathbf{P} has a solution $\Rightarrow \mathbf{P}^*$ is normal and \mathbf{P}^{**} has a solution, $\Rightarrow \mathbf{P}^*$ is stable. Similarly, \mathbf{P} is normal and \mathbf{P}^* has a solution $\Rightarrow \mathbf{P}$ is stable. (II) \Rightarrow (I) direct. (III) \Rightarrow (I) follows directly from previous proposition.

Proposition 5 A stability criterion.

Assume Φ is convex, that $\inf \mathbf{P} \in \mathbf{R}$. $\Phi(u_0, .)$ is bounded above at 0 for some $u_0 \in \mathbf{V}$. Then \mathbf{P} is stable.

Proof.

$$h(p) = \inf_{u \in \mathbf{V}} \Phi(u, p) \le \Phi(u_0, p),$$

and $h(0) \in \mathbf{R} \Rightarrow h$ is bounded above at $0, \Rightarrow h$ is continuous at $0, \Rightarrow \partial h(0) \neq \phi$. Then P is stable.