Lecture 15 (Duality in convex optimization)

Setting: V, Y are topological vector spaces, V^*, Y^* are their dual, $F: V \longrightarrow \mathbb{R}$ and

$$(P) \qquad \inf_{u \in V} F(u)$$

- The inf for problem (P) will be denoted by inf P.
- A solution of (P) is any $u \in V$ such that $F(u) = \inf P$.
- Problem (P) is called nontrivial if $\exists u_0 \in V$ such that $F(u_0) < \infty$. If $F \in \Gamma_0(V)$, then (P) is nontrivial.

Suppose $\Phi: V \times Y \longrightarrow \mathbb{R}$ such that $\Phi(u, 0) = F(u)$. The problem

$$P_p$$
) $\inf_{u \in V} \Phi(u, p)$

is called the perturbed prolem of (P) with respect to Φ $(P_0 = P)$. The problem

$$(P^*) \qquad \sup_{p^* \in Y^*} \{-\Phi(0, p^*)\}$$

is called the dual of (P) with respect to Φ^{1} .

Proposition 1

$$-\infty \le \sup P^* \le \inf P \le \infty$$

Proof.
$$\sup P^* = \sup_{p^* \in V^*} \{-\Phi^*(0, p^*)\}$$

 $\Phi^*(0, p^*) = \sup_{\substack{(u,p) \in V \times Y \\ u \in V}} \{\langle p, p^* \rangle - \Phi(u, p)\}$
 $\geq \sup_{\substack{u \in V \\ u \in V}} -\Phi(u, 0)$
 $= -\inf_{\substack{u \in V \\ u \in V}} F(u)$

So, $\sup P^* \leq \inf P$.

Proposition 2 If P is nontrivial then

$$\label{eq:product} \begin{split} &-\infty \leq \sup P^* \leq \inf P < \infty \end{split}$$
 If P^* is nontrivial then $-\infty < \sup P^* \leq \inf P \leq \infty \end{split}$ If P and P^* are nontrivial then $-\infty < \sup P^* \leq \inf P < \infty$

Reiteration of duality

The problem

$$P_{u^*}^*$$
) $\sup_{p^* \in Y^*} \{-\Phi(u^*, p^*)\}$

is called the associated perturbed problem of P^* . The bidual problem

(

 $(P^{**}) \qquad \inf_{u \in V} \{\Phi^{**}(u, 0)\}$

This process terminates. Indeed, $P^{***} = P^*$.

• If $P^{**} = P(Q^{**} = Q)$, then P, P^* are the dual of each other.

• If $\Phi \in \Gamma(V, Y)$ then $P^{**} = P$ and P is nontrivial.

Normal problems and stable problems

 $\Phi \in \Gamma_0(V \times Y)$ define $h(p) = \inf P_p = \inf \Phi(u, p)$.

Lemma 3 $h: Y \longrightarrow \mathbb{R}$ is convex.

Proof. Let $p, q \in Y$ and $\lambda \in [0, 1]$. Assume that $\lambda h(p) + (1 - \lambda)h(q)$ is defined. If either h(p) or h(q) is infinite, nothing to prove. Assume h(p) and h(q) are finite. Let $\epsilon > 0$ be given, there exists a $u_1 \in V$ such that

$$\Phi(u,p) \le h(p) + \epsilon$$

and there exists $u_2 \in V$ such that

$$\Phi(u,q) \le h(q) + \epsilon$$

Now, we have

$$h [\lambda h(p) + (1 - \lambda)h(q)] \leq Q [\lambda(u_1, p) + (1 - \lambda)(u_2, q)]$$

$$\leq \lambda Q(u_1, p) + (1 - \lambda)Q(u_2, q)$$

$$\leq \lambda h(p) + (1 - \lambda)h(q) + \epsilon$$

Since ϵ is arbitrary h is convex.

Lemma 4 For all $p^* \in V^*$

$$h^*(p^*) = \Phi^*(0, p^*)$$

Proof.

$$\begin{split} h^*(p^*) &= \sup_{p \in Y} \langle p^*, p \rangle - h(p) \\ &= \sup_{p \in Y} \{ \langle p^*, p \rangle - \inf_{u \in V} \Phi(u, p) \} \\ &= \sup_{(u,p) \in V \times Y} \{ \langle p^*, p \rangle - \Phi(u, p) \} \\ &= \sup_{(u,p) \in V \times Y} \{ \langle u, 0 \rangle + \langle p^*, p \rangle - \Phi(u, p) \} = \Phi^*(0, p^*) \end{split}$$

Lemma 5 sup $P^* = h^{**}(0)$.

Proof.

$$\begin{split} \sup P^* &= \sup_{p^* \in Y^*} \{ -\Phi^*(0, p^*) \} \\ &= \sup_{p^* \in Y^*} \{ -h^*(p^*) \} \\ &= \sup_{p^* \in Y^*} \{ \langle 0, p^* \rangle - h^*(p^*) \} = \Phi(0, p^*) \end{split}$$

Remark 6

$$\sup P^* \le \inf P \Leftrightarrow h^{**}(0) \le h(0)$$

Definition 7 The problem (P) is called normal if $h(0) \in \mathbb{R}$ and h is lsc at 0.

Proposition 8 Problem (P) is normal iff $\sup P^* = infP \in \mathbb{R}$.

Proof. Assume that (P) is normal. Let \overline{h} be the lsc regularization of h. Then

$$h^{**} \le \overline{h} \le h \tag{1}$$

 $\overline{h}(0) = h(0)$, \overline{h} is convex, lsc and finite at 0. So

$$\overline{h} \not\equiv -\infty \Rightarrow \overline{h} \in \Gamma_0(Y) \Rightarrow \overline{h}^{**} = \overline{h}$$

From 1

but $h^* = \overline{h}^*$. So $h^{**} = \overline{h}^{**} = \overline{h}$ and $h^{**}(0) = \overline{h}(0) = h(0)$. That is

$$\sup P^* = infP$$

Now assume $\sup P^* = infP \in \mathbb{R}$. Then $h^{**}(0) = h(0)$. Let \overline{h} be the lsc regularization of h

$$h^{**} \le \overline{h} \le h$$

So h is lsc at 0, i.e.

$$h(0) = \overline{h}(0) = \liminf_{p \longrightarrow 0} h(p)$$

Lemma 9 P^* is normal iff inf $P = \sup P^*$

Proof. By proposition (8) P^* is normal iff $\inf P^{**} = \sup P^*$ i.e. $\inf P = \sup P^* \blacksquare$