1 Convex Sets and their separation

Let V be a vector space, $u, v \in V$. Then

- The line segment between u and v is $[u, v] = \{\lambda u + (1 \lambda)v : \lambda \in [0, 1]\}.$
- $A \subseteq V$ is convex iff $A = \{\sum_{i=1}^{n} \lambda_i u_i : \sum_{i=1}^{n} \lambda_i = 1, \lambda_i \ge 0, u_i \in A\}.$
- ϕ is convex.
- $A \subseteq V$, co(A) =convex hull of A = smallest convex set containing $A = \{\sum_{i=1}^{n} \lambda_i u_i : \sum_{i=1}^{n} \lambda_i = 1, \lambda_i \ge 0, u_i \in A\}$
- V' denotes the set of linear functional on V.
- A hyperplane $H \subseteq V$ is defined by $H = \{u \in V : l(u) = \alpha \text{ for some } l \in V', \alpha \in \mathbb{R}\}$. If $l(u) = \alpha$ is replaced by $l(u) < \alpha$ or $l(u) > \alpha$ ($l(u) \ge \alpha$ or $l(u) \le \alpha$), then we have open (closed) half spaces.

1.1 Separation of convex sets

Let V be a topological vector space (tvs) over the reals, $u, v \in V, \alpha \in \mathbb{R}$. Here, we have $(u, v) \longrightarrow u + v, (u, \alpha) \longrightarrow \alpha v$ are continuous. V is called locally convex space (lcs) ¹ if it has a fundamental sysytem of neighborhoods of zero consisting of convex sets.

- If $A \subseteq V$ is convex, then so are A, \overline{A} .
- If $u \in \overset{\circ}{A}, v \in \overline{A}$, then $[u, v] \subseteq \overset{\circ}{A}$ and $\overline{\overset{\circ}{A}} = \overline{A}$.
- **Definition 1** (Internal Points) A is convex, a point $u \in A$ is called an internal point of A if every line passing through u intersects A in two distinct points u_1 and u_2 such that $u \in (u_1, u_2)$.
 - Every interior point is internal.
 - If $\overset{\circ}{A} \neq \phi$, then every internal point to A is interior.
- $A \subseteq V, \overline{co}(A) =$ closed convex hull of A = intersection of all closed convex sets containing A.
- In a locally convex space (lcs), a hyperplane *H* is closed iff its representing functional is continuous.

Definition 2 (Separation of sets by hyperplanes) $A, B \subseteq V$. A hyperplane H is said to (strictly) separates A and B if each one of them is contained in one of the (open) half spaces determined by H.

Theorem 1 (Hahm-Banach theorem) V is a vs, M is an affine set of V, $\phi \neq A \subseteq V$ convex, there exits a hyperplane H such that $M \subseteq H$ and $A \cap H \neq \phi$.

- Corollary 1 If $\phi \neq A \subseteq V$ is open and convex, $\phi \neq B \subseteq V$ is convex. Then there exists a hyperplane that separates A and B.
- Corollary 2 C(convex), $B \subseteq V(lcs)$, $C \cap B = \phi$, $C \neq \phi B \neq \phi$ and B is compact. Then there exists a hyperplane H which strictly separates A and B.

Definition 3 (Supporting hyperplanes) $A \subseteq V, u \in A$. If there exists H such that A lies on one side of H and $u \in H$, then u is called a supporting hyperplane of A at u and u is called the supporting point.

- Corollary 3 If $A \subseteq V$ (tvs), $\stackrel{\circ}{A} \neq \phi$ is convex. Then every point in the boundary of A is a supporting point.
- Corollary 4 If V (lcs), $M \subseteq V$ is closed and convex. Then M is the intersection of all closed hyperlanes containing it. boundary of A is a supporting point.

 $\sigma(V, V')$ is called the weakest topology. V is a T_2 locally convex space in this topology. $\sigma(V, V')$ is the weakest topology in which V is T_2 locally convex. In a locally convex space, every closed convex set is also weakly closed.

¹A normed space is lcs