Lecture 9

We have seen in the previous lecture the if $F: V \longrightarrow \overline{\mathbb{R}}$ is convex, finite $(u \in V, |F(u)| < \infty)$ and continuous at u. Then $\partial F(v) \neq \phi$ for all $v \in \overbrace{\text{dom.}}^{\circ}$. The following inequality is satisfied for each $u^* \in \partial F(u)$

$$\langle v - u, u^* \rangle + \alpha (a - F(u)) \ge 0, \quad \forall \quad (v, a) \in \mathbf{epi}F$$

So for (v, F(v)) we have

$$\begin{split} \langle v-u,u^*\rangle + \alpha(F(v)-F(u)) &\geq 0\\ F(v) &\geq \langle v-u,-\frac{1}{\alpha}u^*\rangle + F(u) \end{split}$$

So $-\frac{1}{\alpha}u^* \in \partial F(u)$; which shows that $\partial F(u) \neq \phi$

Relation with Gâteaux derivative

 $F: V \longrightarrow \overline{I\!\!R}, u \in V.$ If there exists $u^* \in V^*$ such that

$$F'(u,v) = \lim_{\lambda \to 0+} \frac{F(u+\lambda v) - F(u)}{\lambda} = \langle v, u^* \rangle, \qquad \forall v \in V$$

Then u^* is called the Gâteaux derivative of F at u, denoted b F'(u). F'(u, v) is called the directional derivative of F at u in the direction of v. If F is convex, then the above limits always exists; since $\frac{F(u+\lambda v)-F(u)}{\lambda}$ is nondecreasing function of λ (check it).

PROPOSITION 1

Let $F: V \longrightarrow \overline{\mathbb{R}}, u \in V$. If F'(u) exists, then $\partial F(u) = \{F'(u)\}$. Conversely, if F is continuous and finite at u and $\partial F(u)$ consists of only one subgradient, then F'(u) exists and $\partial F(u) = \{F'(u)\}$.

Proof. F'(u) exists; that is

$$\langle v, F'(u) \rangle = \lim_{\lambda \to 0+} \frac{F(u - \lambda v) - F(u)}{\lambda} \le \frac{F(u - \lambda v) - F(u)}{\lambda}, \qquad \forall \quad \lambda \ge 0$$

Let $u + \lambda v = w$, then

$$\langle \frac{w-u}{\lambda}, F'(u) \rangle \leq \frac{F(w) - F(u)}{\lambda} \\ \langle w-u, F'(u) \rangle + F(u) \leq F(w) \\ \therefore F'(u) \in \partial F(u)$$

Now, suppose $u^* \in \partial F(u)$

$$\langle v - u, u^* \rangle + F(u) \le F(v), \qquad v \in V$$

Let $\lambda > 0$, put $v = u + \lambda w$. So we have for all $w \in V$ (using the convexity of F)

$$\langle w, u^* \rangle + F(u) \leq \frac{F(u + \lambda w) - F(u)}{\lambda} \leq \frac{F(u + \lambda_0 w) - F(u)}{\lambda_0} \qquad \text{ where } \lambda_0 > \lambda$$

This shows that F'(u) exists. Taking the limit as $\lambda \to 0+$ we have

$$\langle w, u^* \rangle \le \langle w, F'(u) \rangle \quad \forall \quad w \in V$$

So $u^* = F'(u)$ (since $\langle -w, u^* \rangle \leq \langle -w, F'(u) \rangle \Rightarrow \langle w, u^* \rangle \geq \langle w, F'(u) \rangle$)

LEMMA 2

Let $F : A \subseteq V \longrightarrow \mathbb{R}$, where A is a convex set, F is Gâteaux differentiable on A. Then A =internal A.

Proof. Let $u \in A$. Since F'(u) exists, then

$$\langle v, F'(u) \rangle = \lim_{\lambda \to 0+} \frac{F(u + \lambda v) - F(u)}{\lambda}$$

Hence, for any $v \in V, u + \lambda v \in A$ for sufficiently small λ . So u is an internal to A.

PROPOSITION 3

Let $F : A \subseteq V \longrightarrow \mathbb{R}$, where A is a convex set, F is Gâteaux differentiable on A. Then the following statements are equivalent.

- (i) F (strictly) convex on A.
- (ii) $F(v)(>) \ge F(u) + \langle F'(u), v u \rangle$.

Proof. $(i) \Rightarrow (ii)$ Suppose that *F* is strictly convex.

$$\langle w,F'(u)\rangle = \lim_{\lambda\to 0+} \frac{F(u+\lambda w)-F(u)}{\lambda} \leq \frac{F(u+\lambda w)-F(u)}{\lambda}, \qquad \forall \quad \lambda>0$$

Let $u + \lambda w = v$, then

$$\langle \frac{v-u}{\lambda}, F'(u)\rangle \leq \frac{F(v)-F(u)}{\lambda}$$

So,

$$F(v) \ge \langle v - u, F'(u) \rangle + F(u)$$

Since v is an internal point of A (by previous lemma). Then for $v = \alpha v_1 + (1 - \alpha)u$, $\alpha \in (0, 1)$ we have

$$\begin{array}{lll} \alpha F(v_1) + (1-\alpha)F(u) &> F(v) \geq \langle \alpha v_1 + (1-\alpha)u - u, F'(u) \rangle + F(u) \\ \alpha F(v_1) &> \alpha \langle v_1 - u, F'(u) \rangle + \alpha F(u) \\ F(v_1) &> \langle v_1 - u, F'(u) \rangle + F(u) \end{array}$$

This proves the first direction.