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Lecture 9

We have seen in the previous lecture the if F': V — IR is convex, finite (u € V,|F(u)| < 00) and continuous

at u. Then 0F (v) # ¢ for all v € @. The following inequality is satisfied for each u* € 9F(u)
(v —u,u”) + ala— F(u)) >0, YV (v,a) € epiF
So for (v, F'(v)) we have
w—u,u*) +a(F(v)— F(u)) >0
F(v) > (v —u, —élﬁ) + F(u)

So —Lu* € 9F(u); which shows that 0F (u) # ¢

Relation with Gateaux derivative
F:V — IR,u € V. If there exists u* € V* such that

= (v,u"), YveV

Then u* is called the Gateaux derivative of F' at u, denoted b F’(u). F’(u,v) is called the directional deriva-

tive of F' at « in the direction of v. If F' is convex, then the above limits always exists; since w is
nondecreasing function of A (check it).

PROPOSITIOI\E 1
Let F: V — R,u € V. If F'(u) exists, then 0F (u) = {F'(u)}. Conversely, if F' is continuous and finite at u
and OF (u) consists of only one subgradient, then F’(u) exists and 0F (u) = {F'(u)}.

Proof. F'(u) exists; that is

Let u + Av = w, then

A
(w—u, F'(u)) + F(u) < F(w)
o F'(u) € OF (u)
Now, suppose u* € OF (u)
(v —u,u*) + F(u) < F(v), veV
Let A\ > 0, put v = u + A\w. So we have for all w € V (using the convexity of F')

F(u+ Aw) — F(u) < F(u+ Mw) — F(u)

(w,u*) + F(u) < 5 < "

where \g > A

This shows that F’(u) exists. Taking the limit as A — 0+ we have
(w,u*y < (w,F'(u)) V w eV
So u* = F'(u) (since (—w, u*) < (—w, F'(u)) = (w,u*) > (w, F'(u))) =

LEMMA 2
Let FF: A CV — IR, where A is a convex set, F' is Gateaux differentiable on A. Then A = internal A.
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Proof. Let u € A. Since F'(u) exists, then

Hence, for any v € V,u + Av € A for sufficiently small A\. So v is an internal to A. m

PROPOSITION 3
Let F : A C V — IR, where A is a convex set, I' is Gateaux differentiable on A. Then the following
statements are equivalent.

(i) F (strictly) convex on A.
(i) F(v)(>) > F(u) + (F'(u),v — u).

Proof. (i) = (ii) Suppose that F' is strictly convex.

Let u + Aw = v, then
<v—u
A

() <

So,
F(v) > (v—u, F'(u)) + F(u)

Since v is an internal point of A (by previous lemma). Then for v = av; + (1 — a)u, « € (0,1) we have
aF(v)+ (1—a)F(u) > F(v)>{avs+ (1 —a)u—u, F'(u)) + F(u)
aF(vy) > afvy —u, F'(u)) + oF(u)
F(v1) > (v1 —u, F'(u)) + F(u)

This proves the first direction. m
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