Lecture 5

Theorem:

Let V be a real vector space and let $F: V \to \overline{R}$. Then the following are equivalent:

(1) $\exists \emptyset \neq O \subseteq V$ such that F is bounded above in O.

(2)
$$\widehat{dom}$$
 $F \neq \emptyset$, F is locally Lipschitz on \widehat{dom} F

Proof:

$$(1) \Rightarrow (2)$$

Let $u \in \widehat{dom} F$. Then, F is continuous at u. So F is absolutely bouned (by a) in a ball $\overline{B(u,r)}$, r > 0. Let $v \in \widehat{dom} F$.

$$\begin{split} B(u,r). \text{ Write } v &= (1-\lambda)u + \lambda w_1 \\ \Rightarrow \quad v - u &= \lambda(w_1 - u) \\ \Rightarrow \quad \|v - u\| &= \lambda r \\ \Rightarrow \quad F(v) - F(u) &= F((1-\lambda)u + \lambda w_1) - F(u) \\ &\leq (1-\lambda)F(u) + \lambda F(w_1) - F(u) \\ &= \lambda(F(w_1) - F(u)) < 2a\frac{\|u - v\|}{r} \end{split}$$

Now if
$$u = (1 - \overline{\lambda})v + \overline{\lambda}w_2$$

$$\Rightarrow u - v = \overline{\lambda}(w_2 - v) \Rightarrow \overline{\lambda} = \frac{\|u - v\|}{r + \|u - v\|}$$

$$F(u) - F(v) \le 2a\overline{\lambda} = 2a\frac{\|u - v\|}{r + \|u - v\|} \le \frac{2a}{r}\|u - v\| \Rightarrow$$

$$|F(u) - F(v)| \le \frac{2a}{r}\|u - v\|$$

For any $v\in \widehat{dom}\ F$ cover [u,v] by a finite set $B(u_i,r_i),\ i=1,2,...,n$ for which $u_1=u,\ u_n=v$ and $u_{i+1}\in B(u_i,r_i).$ Then,

$$|F(u) - F(v)| \leq \sum_{i=1}^{n-1} |F(u_{i+1}) - F(u_i)|$$

$$\leq \sum_{i=1}^{n-1} \frac{2a_i}{r_i} ||u_{i+1} - u_i||$$

$$\leq \sum_{i=1}^{n-1} \frac{2a_i}{r_i} c_i ||u - v||$$

where
$$c_i = \frac{\|u_{i+1} - u_i\|}{\|u - v\|}$$

Definition:(Cafs)

A caf is the pointwise (pw) supermum of a continuous affine fanuctionals.

Definition: $(\Gamma(V))$

 $\Gamma(V)$ is the set of funtions $F:V\to \overline{R}$ which are the pw superma of families of cafs.

Note:

(1)
$$\infty$$
 and $-\infty \in \Gamma(V)$

(2)
$$\Gamma_{\circ}(V) = \Gamma(V) \setminus \{-\infty, \infty\}.$$

(3)
$$F \in \Gamma(V) \Rightarrow F$$
 is convex and l.s.c.

Proposition:

The following are equivalent:

(i)
$$F \in \Gamma(V)$$

(ii) F is convex and l.s.c. and if F assumes the value of $-\infty$, then $F \equiv -\infty$

Proof:

(ii)⇒(i)

Suppose that F is convex and l.s.c. If $F \equiv -\infty, \ F \in \Gamma(V)$ and if $F \equiv \infty, \ F \in \Gamma(V)$.

If *F* is proper and (*F* is not $\equiv \infty$). Let $u \in V$. Then we have two cases:

Case(1): $F(u) < \infty$

Let $\overline{a} < F(u)$. Then \exists a hyperplane $H: L(v) + \alpha a + \beta = 0 \quad \forall v \in V$ that strictly separate $epi\ F$ and (u, \overline{a}) . i.e.

$$L(v) + \alpha a + \beta > 0 \quad \forall \ (v,a) \in epi \ F$$
 and $L(v) + \alpha \overline{a} + \beta < 0$

Claim that $\alpha > 0$.

For $(u, F(u)) \in epi\ F$ we have $L(u) + \alpha F(u) + \beta > 0$ and $-L(u) - \alpha \overline{a} - \beta > 0$ $\Rightarrow \alpha(F(u) - \overline{a}) > 0 \Rightarrow \alpha > 0$

$$\begin{array}{ll} \text{So,} & F(v) > -\frac{1}{\alpha}(L(v) + \beta) & \forall \; v \in V \\ \Rightarrow & \overline{a} < -\frac{1}{\alpha}(L(u) + \beta) < F(u) \end{array}$$

Case (2): $F(u) = \infty$

This means that \exists a hyperplane $H: L(u) + \alpha a + \beta = 0$ that strictly separate $epi\ F$ and (u, \overline{a}) . If $\alpha \neq 0$, we are back to case (1).

If $\alpha = 0$, then $H : L(u) + \beta = 0$

and $L(u) + \beta < 0$ if we substitute with (u, \overline{a}) .

From case(1) we can find a caf minorant $m(v) + \gamma$

$$F(v) \ge m(v) + \gamma \quad \forall \ v \in V$$

$$\therefore F(v) \ge m(v) + \gamma - c(L(v) + \beta) \quad \forall \ c \ge 0$$

We want to choose *c* such that

$$m(u) + \gamma - c(L(u) + \beta) > \overline{a}$$

$$c > \frac{\overline{a} - m(u) - \gamma}{-(L(u) + \beta)}$$

$$\Rightarrow F \in \Gamma(V)$$

end of Lec# 5