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Lecture 14

The Direct Study of Certain Variational Inequalities (continue)

(Au— f,v—u) + ®(v) —®(u) > 0. Vv € V where V is areflexive Banach space, A: V — V%, where
feVxisgivenand ®: V — R.
i) & is proper, Isc and convex.
ii) A is weakly continuous on finite dimensional subspaces of V.
iii) A is a monotone. i.e. (Au— Av,u—v) >0.Vu,v € V.
(Av,v — vo) + ®(v)
o]

iv) A is coercive: 3 v, € V' such that: — o0 as|v|— oo

Problem:
Find u € V such that (Au — f,v —u) + ®(v) — ®(u) > 0. Yv €V (call this *).

Theorem 1 Problem (*) has at least one solution.

Proof:
step (3):

Assume V is of infinite dimension i.e. dimV = oo

Av, v —vo) + P
Let {V,,},—, be a sequence of FD subspaces of V' containing v, that satisfies (Av,v — vo) + 2(v) — 00

as || v |— oo where V,, C V,4; and OleVn. (Note here that having {V;,, n=1,2,3,...} being just a

family of
subspaces is not enough to have such v, in all of V;, i =1,2,3,...)

Now, for each n Jau, €V, s.t.
(Auy — f,v —up) + ®(v) — P(uy,) >0. YoV,

and by the discussion made before about the coercivity of A, we have {u, } is bounded.
S Up — U, for some u, € V.

Digression to investigate monotonicity:
(Au — Av,u—v) >0

= (Au,u —v) > (Av,u —v)
By putting « = uy,, v =uo,, we get (Aum, Um — to) > (Ao, Uy — Uo), and by taking the lim of both
sides as m — oo ,we have(insert a note): lim(Au,, umym — o) > 0 =

T { Aty , Uy, — Uo) > 0 .. (F55)

Also, we already have: (Au,, — f,v —u,) + ®(v) — ®(u,) > 0.
so, by fixing n and letting m > n we have:

(A, = [0 = Up) + B(v) — B(up) >0 =
(V) = D(um) = (f,0 = thm) + (Al Uy — V) erree (FF5)

Note here that
i) since ® Isc and convex then ®(u,) = lim ®(uy).

i) (0 (u,)) = —lim®(u,) T
iii) lim(a — ®(uy,)) = lim(a + (=P (uy,)) = a + lim(—P(u,)) = a — imP(u,,)

Now taking lim of both sides of (****) we get:
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D(v) = P(uo) > (f, v — Uo) + Em(Atp,, U, — v).
Note here that lim of LHS of (****) = lim(®(v) — ®(uy,)) = ®(v) — m®P(uy,) = ®(v) — P(uo).
Also, since n is arbitrary, we have the above inequality is true for all n.

Let v € V andlet v,, — v then

D(vy,) — D(uo) > (f v — Uo) + M (At Uy, — V).
Take lim for both side as n — co we get:

()~ B(uo) > (f.0— o) + lim T (Auty, 1y — )

> (f, v — uo) + lim lim (At Uy, — vy)

= (f,v — Uo) + lim (A, U, —v) ¥V v E V.
Now, if we let v = u, in the above inequality (since it is trueV v € V') we have:
0 > lim <Aum7 Um — uo>

= 0> lm (A, U — Uo) > Hm (Aty,, Up — Uo) > 0 (by(¥**)above) > lim (At , U, — Uo) -

m
hIl’l<Aum, Um — uo> =0.eeeeennneen (*****)

By going back to monotonicity of Ai.e. (Au,u—v) > (Av,u —v) and letting u = u,,, v = (1 — @)uo + qw
then
U — U = Uy — (1 — @)uo — qw
= Uy, — Uo + (U — W)
= (1 — a)(um — uo) + a(um — w)

and so
(Attm, (1 — @) (U — uo) + @ty — w)) > (Av, Uy, — Uo + (e — w))
= (1= a){Aum, (Um — Uo)) + A(Alp,, Uy, — w)) > (Av, Uy, — Uo) + @{AV, us — w)
taking lim for both sides gives:
alim(( A, Uy — w)) > alim(Av, u, — w) or:
lim (A, U — w)) > lim(Av, uo —w) and by taking lig}) = (by using the continuity v — u,
asa—0 :

we have v — u, and so Av — Au,).

T { Aty , Uy, — w) > WM { Ay, Uy, — W) > (Ao, uo —w) Yw €V
and by (*****) we have:

O(w) — P(uo) > (f,w — uo) + (Ao, uo —w) or
(Auo — fyw — uo) + P(w) — P(uo) >0
i.e. it has a solution

Special Cases:

case (1):
A:C CV — V*. Cisclosed and convex. A is a monotone, weakly continuous on a FD subset
of C and coercive. Then, there exists a u € C' such that (Au — f,v —u) >0

proof:
By extending A to the whole space as
Ty — Au if uel
if ugC
and by using ® being the indicator function on C, we have the result directly by the previous
theorem.
case (2):
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A:V — V* with same assumption as above i.e. monotone.,,etc. = Ju cV s.t. Au=f
proof:
By putting V = C'in case (1) and lettingv =u +w andsov —u=w we get:
(Au— f,w) >0 Y weV* =
(Au—f,—w) >0 =
(Au— fw)y=0 Y weV* =

Au=f

case (3):

A:V — V* where V is a Hilbert space with V' = V*. A is linear and bounded with
(Au,u) > a || u ||* . Then given f € V , there exists a unique u € V s.t. Au= f.

proof:
Note here that a bounded operator is continuous iff it is weakly continuous.

Monotonicity of A:
(Au— Av,u —v) = (A(u —v),u—v) > allu—2v|*>0

Coercivity of A:

(Auu) _ ol |?
[ —
So, by case (2) the existence is obtained. The uniqueness of u is obtained easily (Au,u) > o || u ||?
Assume J uy,up such that Au; = f = Aus. Then:
(Auy — Aug,ur — ug) = (A(ur — ug),uy —ug) > o || ug — uz ||?=
0= {(f—fiug —uz) >allu—u|®> Va =
0= w3 —us = wu; =ug i.e. u isunique.

=aflufl=oo as [lu— oo
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