
KFUPM
Math 640, Semester 072 Lecture 13

Transcribed by:
Abdulkhaleg Al-Baiayt

The Direct Study of Certain Variational Inequalities
〈Au− f, v − u〉+ Φ(v)− Φ(u) ≥ 0. ∀ v ∈ V where V is a reflexive Banach space, A: V→V*, where f∈V* is
given and Φ : V → R̄.

i) Φ is proper, lsc and convex.
ii) A is weakly continous on finite dimensional subspaces of V.
iii) A is a monotone. i.e. 〈Au−Av, u− v〉 ≥ 0. ∀ u, v ∈ V.

iv) A is coercieve: ∃ v◦ ∈ V such that:
〈Av, v − v◦〉+ Φ(v)

‖v ‖
→ ∞ as ‖ v ‖→ ∞.

Problem:
Find u∈V such that 〈Au− f, v − u〉+ Φ(v)− Φ(u) ≥ 0. ∀ v ∈ V (call this *).

Theorem:

Problem (*) has at least one solution.
Proof:
step (1):
Assume V is finite dimensional (FD) and (dom Φ) is bounded. Also we assume here that V has a Hilbert

space structure).
(*) may be rewritten as follows:
〈u− (u−Au + f), v − u〉+ Φ(v)− Φ(u) ≥ 0. ∀ v ∈ V
where u = ProxΦ(u−Au + f)
Define T:V→dom Φ ⊆ cl(dom Φ) by

Tu: ProxΦ(u−Au + f)
The idea here is to show that T has a fixed point. If we can show that ProxΦ : V →domΦ is continuous

then T has a fixed point by Brouwer’s fixed point theorem. For that let f1,f2 ∈ V , u1 =ProxΦ f1 , u2 =ProxΦ

f2 then:
〈u1 − f1, v − u〉+ Φ(v)− Φ(u) ≥ 0
〈u2 − f2, v − u〉+ Φ(v)− Φ(u) ≥ 0
〈u1 − f1, u2 − u1〉+ Φ(u2)− Φ(u1) ≥ 0
〈u2 − f2, u1 − u2〉+ Φ(u1)− Φ(u2) ≥ 0 by summing the last two inequalities we get:
〈(u1 − f1)− (u2 − f2), u2 − u1〉 ≥ 0 or by rearranging:
〈(u1 − u2)− (f1 − f2), u2 − u1〉 ≥ 0 =⇒
‖u2 − u1‖2 ≤ − 〈f1 − f2, u2 − u1〉 ≤ ‖f1 − f2‖‖u2 − u1‖ =⇒ ‖u2 − u1‖ ≤ ‖f1 − f2‖
Therefore it is continous and so T has a fixed point u ∈ cl(domΦ) and because u = Tu ∈ domΦ since

range T is in domΦ
∴ (*) has a solution.

Step (2):
Now assume only that V is FD.

For n = 1,2,3,....., define Φn(u) =
{

Φ(u) if ‖ u ‖≤ n
∞ if ‖ u ‖	 n

Note that domΦn ⊆ B(0.n).
By step (1) the problem 〈Au− f, v − u〉+ Φn(v)− Φn(u) ≥ 0 has a solution un ∈ domΦn ⊆ B(0.n)
i.e. 〈Aun − f, v − un〉+ Φn(v)− Φn(un) ≥ 0. ∀ v ∈ V .
Now calaim that {un} is bounded. If we assume not then we have:
〈Aun − f, v◦ − un〉+ Φn(v◦)− Φ(un) ≥ 0 (note here that Φn(un) = Φ(un) since ‖un‖ ≤ n)
⇒ 〈Aun, un − v◦〉+ Φ(un) ≤ Φn(v◦)− 〈f, v◦ − un〉
note here that for sufficiently large n ≥ ‖v◦‖, we have Φn(v◦) = Φ(v◦) and so
〈Aun, un − v◦〉+ Φ(un) ≤ Φ(v◦)− 〈f, v◦ − un〉 and by dividing every thing by ‖un‖ we get:
〈Aun, un − v◦〉+ Φ(un)

‖un ‖
≤ Φ(v◦)
‖un ‖

+ ‖f ‖ (1 +
‖v◦ ‖
‖un ‖

) which → ‖f ‖� ∞ as ‖un ‖→ ∞ and this of course

conradicts the coercevity. Hence, {un} is bounded.

Now, since {un} is bounded in a FD space, there exists a subsequence
{
unj

}
and a u ∈ V such that
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unj
→ u and (Auj

→ Au by continuity of A).
Letting v ∈ V ⇒ 〈Aunj

− f, v − unj
〉+ Φnj

(v)− Φ(unj
) ≥ 0

Then for sufficiently large nj with ‖v ‖≤ nj we have Φnj (v) = Φ(v)
∴ taking the limit of both sides as j →∞ we get
〈Au− f, v − u〉+ Φ(v)− Φ(u) ≥ 0 and this completes the proof.

Remark :
If Aun → Au then 〈Aun, u〉 → 〈Au, u〉 but it not always true that 〈Aun, un〉 → 〈Au, u〉 whenever

un → u.Acutually
this can not happen unless we impose the conition of boundedness on either Aun or un. Note on the
following:
〈Aun, un〉 = 〈Aun, u− u + un〉 = 〈Aun, u〉+ 〈Aun, un − u〉 → 〈Au, u〉+ 〈Aun, un − u〉
But | 〈Aun, un − u〉 | ≤ ‖ Aun ‖‖ un − u ‖ .....(∗∗)
And since ‖ un−u ‖→ 0 as un → u then the r.h.s of (**) will not vanished unless ‖ Aun ‖ is bounded.
Similar argument can be done on Aun to have un being bouned.
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