The Direct Study of Certain Variational Inequalities

 $\langle Au - f, v - u \rangle + \Phi(v) - \Phi(u) \ge 0$. $\forall v \in V$ where V is a reflexive Banach space, A: V \to V^*, where $f \in V^*$ is given and $\Phi: V \to \overline{R}$.

i) Φ is proper, lsc and convex.

ii) A is weakly continous on finite dimensional subspaces of V.

iii) A is a monotone. i.e. $\langle Au - Av, u - v \rangle \ge 0$. $\forall u, v \in V$.

iv) A is coercieve: $\exists v_{\circ} \in V$ such that: $\frac{\langle Av, v - v_{\circ} \rangle + \Phi(v)}{\|v\|} \to \infty$ as $\|v\| \to \infty$.

Problem:

Find $u \in V$ such that $\langle Au - f, v - u \rangle + \Phi(v) - \Phi(u) \ge 0$. $\forall v \in V$ (call this *).

Theorem:

Problem (*) has at least one solution.

Proof:

step (1):

Assume V is finite dimensional (FD) and (dom Φ) is bounded. Also we assume here that V has a Hilbert space structure).

(*) may be rewritten as follows: $\langle u - (u - Au + f), v - u \rangle + \Phi(v) - \Phi(u) \ge 0. \ \forall v \in V$ where $u = Prox_{\Phi}(u - Au + f)$ Define T:V \rightarrow dom $\Phi \subseteq$ cl(dom Φ) by Tu: $Prox_{\Phi}(u - Au + f)$

The idea here is to show that T has a fixed point. If we can show that $Prox_{\Phi}: V \rightarrow \text{dom}\Phi$ is continuous then T has a fixed point by Brouwer's fixed point theorem. For that let $f_1, f_2 \in V$, $u_1 = Prox_{\Phi} f_1$, $u_2 = Prox_{\Phi}$ f_2 then:

 $\langle u_1 - f_1, v - u \rangle + \Phi(v) - \Phi(u) \ge 0$ $\langle u_2 - f_2, v - u \rangle + \Phi(v) - \Phi(u) \ge 0$ $\langle u_1 - f_1, u_2 - u_1 \rangle + \Phi(u_2) - \Phi(u_1) \ge 0$ $\langle u_2 - f_2, u_1 - u_2 \rangle + \Phi(u_1) - \Phi(u_2) \ge 0$ by summing the last two inequalities we get: $\langle (u_1 - f_1) - (u_2 - f_2), u_2 - u_1 \rangle \ge 0$ or by rearranging: $\langle (u_1 - u_2) - (f_1 - f_2), u_2 - u_1 \rangle \ge 0 \implies$ $||u_2 - u_1||^2 \le -\langle f_1 - f_2, u_2 - u_1 \rangle \le ||f_1 - f_2|| ||u_2 - u_1|| \implies ||u_2 - u_1|| \le ||f_1 - f_2||$

Therefore it is continous and so T has a fixed point $u \in cl(dom\Phi)$ and because $u = Tu \in dom\Phi$ since range T is in dom Φ

 \therefore (*) has a solution.

Step (2):

Now assume only that V is FD. For n = 1,2,3,...., define $\Phi_n(u) = \begin{cases} \Phi(u) & \text{if } ||u|| \le n \\ \infty & \text{if } ||u|| \ge n \end{cases}$

Note that dom $\Phi_n \subseteq B(0.n)$. By step (1) the problem $\langle Au - f, v - u \rangle + \Phi_n(v) - \Phi_n(u) \ge 0$ has a solution $\mathbf{u}_n \in \operatorname{dom} \Phi_n \subseteq \overline{B(0.n)}$ i.e. $\langle Au_n - f, v - u_n \rangle + \Phi_n(v) - \Phi_n(u_n) \ge 0$. $\forall v \in V$. Now calaim that $\{u_n\}$ is bounded. If we assume not then we have: $\langle Au_n - f, v_\circ - u_n \rangle + \Phi_n(v_\circ) - \Phi(u_n) \ge 0$ (note here that $\Phi_n(u_n) = \Phi(u_n)$ since $||u_n|| \le n$) $\Rightarrow \langle Au_n, u_n - v_{\circ} \rangle + \Phi(u_n) \le \Phi_n(v_{\circ}) - \langle f, v_{\circ} - u_n \rangle$ note here that for sufficiently large $n \ge ||v_{\circ}||$, we have $\Phi_n(v_{\circ}) = \Phi(v_{\circ})$ and so $\langle Au_n, u_n - v_{\circ} \rangle + \Phi(u_n) \leq \Phi(v_{\circ}) - \langle f, v_{\circ} - u_n \rangle$ and by dividing every thing by $||u_n||$ we get: $\frac{\langle Au_n, u_n - v_o \rangle + \Phi(u_n)}{\|u_n\|} \leq \frac{\Phi(v_o)}{\|u_n\|} + \|f\| \left(1 + \frac{\|v_o\|}{\|u_n\|}\right) \quad \text{which} \to \|f\| \leq \infty \quad \text{as } \|u_n\| \to \infty \quad \text{and this of course}$ conradicts the coercevity. Hence, $\{u_n\}$ is bounded.

Now, since $\{u_n\}$ is bounded in a FD space, there exists a subsequence $\{u_{n_i}\}$ and a $u \in V$ such that

 $u_{n_j} \to u$ and $(A_{u_j} \to A_u$ by continuity of A). Letting $v \in V \Rightarrow \langle Au_{n_j} - f, v - u_{n_j} \rangle + \Phi_{n_j}(v) - \Phi(u_{n_j}) \ge 0$ Then for sufficiently large n_j with $||v|| \le n_j$ we have $\Phi_{n_j}(v) = \Phi(v)$ \therefore taking the limit of both sides as $j \to \infty$ we get $\langle Au - f, v - u \rangle + \Phi(v) - \Phi(u) \ge 0$ and this completes the proof.

$\underline{\mathbf{Remark}}$:

If $Au_n \to Au$ then $\langle Au_n, u \rangle \to \langle Au, u \rangle$ but it not always true that $\langle Au_n, u_n \rangle \to \langle Au, u \rangle$ whenever $u_n \to u$. Acutually

this can not happen unless we impose the conition of boundedness on either Au_n or u_n . Note on the following:

 $\begin{array}{l} \langle Au_n, u_n \rangle = \langle Au_n, u - u + u_n \rangle = \langle Au_n, u \rangle + \langle Au_n, u_n - u \rangle \rightarrow \langle Au, u \rangle + \langle Au_n, u_n - u \rangle \\ \textbf{But} \ \mid \langle Au_n, u_n - u \rangle \mid \leq \parallel Au_n \parallel \parallel u_n - u \parallel \dots (**) \end{array}$

And since $|| u_n - u || \to 0$ as $u_n \to u$ then the r.h.s of (**) will not vanished unless $|| Au_n ||$ is bounded. Similar argument can be done on Au_n to have u_n being bound.