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The Direct Study of Certain Variational Inequalities
(Au— f,v —u) + ®(v) — P(u) > 0. Vv € V where V is a reflexive Banach space, A: V-V*  where feV* is
givenand ® : V — R.

i) @ is proper, Isc and convex.

ii) A is weakly continous on finite dimensional subspaces of V.

iii) A is a monotone. i.e. (Au— Av,u—v) >0.Vu,v € V.
(Av,v — vo) + P(v)

[[ol

iv) A is coercieve: 3 v, € V' such that: —oo as| v |— .

Problem:
Find ueV such that (Au — f,v —u) + ®(v) — ®(u) > 0. Vv €V (call this *).

Theorem:

Problem (*) has at least one solution.

Proof:

step (1):

Assume V is finite dimensional (FD) and (dom ®) is bounded. Also we assume here that V has a Hilbert
space structure).

(*) may be rewritten as follows:

(u—(u—Au+ f),v—u) + P(v) —P(u) >0. VeV

where u = Proze(u— Au+ f)

Define T:-V—dom ® C cl(dom &) by

Tu: Proze(u — Au+ f)

The idea here is to show that T has a fixed point. If we can show that Proxe : V —dom® is continuous
then T has a fixed point by Brouwer’s fixed point theorem. For that let f;,f> € V, u; =Proze f1 , us =Proze
fy then:

(ur = fr,v —u) + ®(v) — ®(u) 2 0

(uQ—fg,U—u>+<I>v) D(u) >0

(ug — fr,ug —u1) + ®(ug) — ®(ug) >0

<U2 — fg, up —ug) + P(uy) — P(uz) > 0 by summing the last two inequalities we get:
((ug — f1) — (u2 — f2),u2 —u1) > 0 or by rearranging:

<(U1 —ug) — (f1 — f2)yuz —u1) >0 =

Jug —ur||* < = (fi = fo,uz —ui) < | fr = folllluz —will = |luz —wil| < | fi = foll

Therefore it is continous and so T has a fixed point u € cl(dom®) and because u = Tu € dom® since
range T is in dom®

.. (*) has a solution.

Step (2):

Now assume only that V is FD.
O(u) if flufl<n

00 if |ullz2n

Note that dom®,, C B(0.n).

By step (1) the problem (Au — f,v — u) + ®,(v) — ®,,(u) > 0 has a solution u,, € dom®,, C B(0.n)
ie. (Au, — f,v —up) + Pp(v) — Pp(u,) > 0. YoV

Now calaim that {u, } is bounded. If we assume not then we have:

(Aup, — f,vo — up) + @ (vo) — ®(up) > 0 (note here that &,,(u,,) = ®(uy,) since ||u,|| < n)

= (AUp, Un — Vo) + P(uy) < @y (vo) — (f, 00 — Up)

note here that for sufficiently large n > ||v.||, we have ®,,(v,) = ®(v,) and so

(At Uy, — Vo) + ®(uy) < ®(vo) — (f,vo — u,) and by dividing every thing by ||u, | we get:
<Aunaun v0> +q)(un) < q)( ) + Hf H (1 + HUO ||

llwn |l ~ lun | l[wn ||
conradicts the coercevity. Hence, {u,} is bounded.

) which — ||f || oo as ||u, |— oo and this of course

Now, since {u,} is bounded in a FD space, there exists a subsequence {u,, } and au € V such that
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un; — u and (A4,, — A, by continuity of A).

Lettingv € V = (Auy; — f,v — uy,) + @y, (v) — ®(uy,) >0

Then for sufficiently large n; with [jv|[<n; we have ®,,(v) = ®(v)
.. taking the limit of both sides as j — co we get '

(Au— f,v —u) + ®(v) — ®(u) > 0 and this completes the proof.

Remark :
If Au,, — Au then (Au,,u) — (Au,u) but it not always true that (Au,,u,) — (Au,u) whenever

u, — u.Acutually
this can not happen unless we impose the conition of boundedness on either Au, or u,,. Note on the

following:
(A, un) = (Atp, u — u + up) = (Atp, u) + (A, uy — u) — (Au,u) + (Auy, up — u)
But | (Aup,un, —u) | < || Aun ||| wn —w || -.... (k)

And since | up —u ||— 0 as u, — u then the r.h.s of (**) will not vanished unless || Au,, || is bounded.
Similar argument can be done on Au,, to have w,, being bouned.
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