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Abstract

A method based on the minimization of variation is presented for the identi�cation
of the completely unknown blur operator. We assume the knowledge of a blurred
image and its original version. The class of blurring operators is identi�ed in the class
of compact operators. A variational method with negative norms is then used for the
restoration of a blurred and noised image. The restoration method works for a wide
class of blurring operators and we do not assume that the blur operator commutes with
the Laplacian.
AMS classi�cation: 68U10
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1 Introduction

An image is considered to be a bounded and open set 
 � R2 with Lipschitz continuous
boundary. The model of image degradation commonly used in the literature is

f = Ru+ n (1)

where f; u : 
 ! R are the degraded image and original image respectively, R is a linear
operator, typically representing blur and n is white Gaussian noise with 0 mean and variance
�2. An important problem in image processing is the one of restoring the original image u
from the blurred and noised version f:
Blur can be introduced by improperly focused lens, relative motion between the camera

and the scene or atmospheric turbulence. The problem of deblurring with a known blur
operator has been extensively addressed in the literature. See, for example, [13], [22] and the
references therein. In many situations, the blur operator is partially known or completely
unknown. Two approaches have been taken for restoring a blurred image with unknown blur
operator. In the �rst approach, restoration and simultaneous identi�cation of the unknown
blur operator is attempted, see for example [15], [19], [24]. In the second approach, the
identi�cation of the blur operator (or point spread function PSF) from a blurred image
is performed prior to the restoration, see for example [6], [11], [12], [21], [23]. Some of
these techniques assume a statistical model of the image, i.e the image is modeled by an
autoregressive process and the blur as a moving average process. More recently, parametric
methods have been used to identify PSF models. In the present case, we will take the second
approach and model the unknown blur by a linear operator.

We employ here the well known technique of the minimization of a regularized energy
function (see [7]) for the identi�cation of the blur operator as well as the image restoration.
For the identi�cation of the blur operator R we assume the knowledge of a blurred image
f0 and its original unblurred version u0: The identi�cation is done by minimizing the energy
function

E (R) =

Z



jf0 �Ru0j2 d
 + 
 trace (R�R) ;

where 
 > 0 is a weight parameter and the trace (�) functional (see, e.g., [9]) is used in order
to introduce a Hilbert space structure on the linear manifold of "blurring operators" and to
force the identi�cation of a compact operator (see Section 2).
Once the blurring operator has been identi�ed, the restoration of the original image

from the noised and blurred one will be carried out. One of the earlier techniques of image
restoration, proposed by Rudin, Osher, and Fatemi [20], involves the minimization of the
energy functional

F (u) = J (u) + �

Z



j(f �Ru)j2 d
:

Here, J (u) is a regularizing term, � > 0 is a weight parameter and
R


j(f �Ru)j2 d
 is a

�delity term. J (u) is the total variation (in the sense of measures; see Section 3) of the
function u: This model allows for discontinuities along curves and therefore, edges are better
restored. Its drawback, however, is that small details and oscillating patterns [16] in the
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image are mostly treated as noise and are thus lost in the restoration process. In this paper
we use the energy functional

G (u) = J (u) + �

Z



��r4�1 (f �Ru)
��2 d
;

where r is the gradient operator and 4�1 is the inverse of the Laplacian. This energy
functional was used in [17] to handle images with oscillating patterns . Their results show
that oscillating patterns are better separated from pure noise using this functional. We
include in this paper a direct proof of the existence and "uniqueness" of a minimizer without
assuming that the operator R commutes with the Laplacian. In fact, we do not even assume
that R is a compact operator as far as image restoration is concerned, as we shall see in
Section 3.

2 Identi�cation of the blur operator

In this section we discuss the problem of identi�cation of the operator R in (1) assuming
the knowledge of an original image u0 2 L2 (
) and its blurred version f0 = Ru0 2 L2 (
) :
Recovering R from this equation is an ill posed problem [7]. To regularize it, we resort to
the minimization of an energy functional such as

E (R) = kf0 �Ru0k2L2(
) + 
 kRk
2
�

for some suitable operator norm k�k2� : The operator R is sought in a space H of compact
operators on L2 (
) : The induced operator norm on L2 (
) could be used, however, to ensure
recovery of a compact operator, the Hilbert norm is imposed on H: For a given V 2 H; the
Hilbert norm of V is de�ned by

kV k2H = trace (V �V )

=
1X
j=1

kV ejk2 ;

for some, and hence all, orthonormal basis f ejg1j=1of L2 (
) : An operator V 2 H with �nite
Hilbert norm is a Hilbert-Schmidt operator, and thus, is compact (see [9]). For ease of
notation we will denote L2 (
) by W: The energy functional E can now be written as

E (R) = kf0 �Ru0k2W + 
 kRk
2
H : (2)

The existence of a unique minimizer R is ensured by the strict convexity of the E.
The following lemma checks the continuous embedding of H into L (W ) ; the space of

bounded operators on W; as well as the completeness of H:

Lemma 1 We have the following properties:

1. There is a c > 0 such that kV k � c kV kH for all V 2 H (here k�k is the induced
operator norm on W ).
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2. H is a Hilbert space with respect to the Hilbert norm.

Proof. To show (1), let V 2 H and let f ejg1j=1 be an orthonormal basis for W consisting
of eigenvectors of V �V with corresponding eigenvalues f�jg1j=1 : Then

kV k2H =
1X
j=1

kV ejk2

=
1X
j=1

hV �V ej; eji

=
1X
j=1

�j � r� (V �V )

= kV �V k ;

where V � is the adjoint of V and r� (V �V ) is the spectral radius of V �V:We claim that there
is a C > 0 such that kV �V k � C kV k2 for all V 2 H: If not then there is a sequence fVng
in H such that kVnk = 1 but kV �n Vnk ! 0: Let fung1n=1 be a norm one sequence in W such
that kVnunkW � 1

2
: Then

1

4
� kVnunk2W = hV �n Vnun; uni � kV �n Vnk ! 0;

which is a contradiction. This proves (1) with c =
p
C�1:

To show (2), let fVng1n=1 be a Cauchy sequence in the norm k�kH : By Property (1)
of this lemma, fVng1n=1 is also a Cauchy sequence in the original norm of L (W ) : Then
Vn ! V and V is compact. Let f�jg1j=1 be the eigenvalues of V �V listed in decreasing

order. Since V �n Vn ! V �V; for each �j there is a sequence �
(kn)
j of eigenvalues of V �knVkn such

that �(kn)j ! �j as n!1: Thus, for any N 2 N; there is a subsequence fVkng
1
n=1 such that

�
(kn)
j ! �j as n ! 1; j = 1; 2; � � � ; n: Since fVng1n=1 is bounded in the normk�kH ; say by
M > 0;

P1
j=1 �

(n)
j �M for all n: Therefore,

NX
j=1

�j = lim
NX
j=1

�
(kn)
j

� lim
1X
j=1

�
(kn)
j �M:

Thus kV k2H =
P1

j=1 �j �M <1; i.e., V 2 H:
Next we turn to the minimization of the energy functional (2). The Euler-Lagrange

equation corresponding to (2) is

hf0 �Ru0; V u0iW = 
 hR; V iH 8V 2 H (3)

De�ne the operator Tu0 : H ! W by Tu0V = V u0 for all V 2 H:
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Lemma 2 The operator Tu0 is a bounded linear operator and there is a c 2 (0; 1) such that
ku0kW � kTu0k � c�1 ku0kW :

Proof. By Lemma 1 we have

kTu0V k = kV u0kW
� kV k ku0kW
� c�1 kV kH ku0kW :

Hence kTu0k � c�1 ku0kW : On the other hand, if we take P 2 H as the projection onto the
subspace span fu0g ; then

kTu0Pk = kPu0kW = ku0kW :
It follows that ku0kW � kTu0k � c�1 ku0kW :
In light of the above lemma, we can rewrite equation (3) as�


I + T �u0Tu0
�
R = T �u0f0; (4)

which must be satis�ed by the minimizer R of the energy E: Since T �u0Tu0 is nonnegative,
equation (4) is solvable for any positive 
: However, taking large values of 
 tends to produce
minimizers which are not in good agreement with the actual operator R: On the other hand,
if large values of 
 are allowed, then equation (4) can be solved by �xed point iterations as
the following lemma will show.

Lemma 3 De�ne the a¢ ne operator F : H ! H by

FV =
1



T �u0 (f0 � V u0) =

1



T �u0 (f0 � Tu0V ) :

For 1


ku0k2W su¢ ciently small, F is a contraction and therefore the iterations

Rp+1 = FRp

converge to a �xed point of F (the solution of (4)) for any choice of the initial guess R0:

Proof. Let U; V 2 H: Then, by Lemma 2 and Lemma 1

kFU � FV kH =
1






T �u0 (V u0 � Uu0)

W
� c�1



ku0k2W kV � Uk

� c�2



ku0k2W kV � UkH :

Therefore, the result follows for su¢ ciently small 1


ku0k2W :
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2.1 The discretized problem

Let fVng1n=1 be a complete set in H: That is, the set of �nite linear combinations of the
elements in fVng1n=1 is dense in H: Let Hn be the subspace of H given by

Hn = span fV1; V2; � � � ; Vng

and let Pn be the orthogonal projection ofH ontoHn with respect to the norm k�kH : Observe

that
1[
n=1

Hn is dense in H:

Lemma 4 The sequence fPng1n=1 converges strongly to the identity operator on H: In other
words, for every V 2 H; PnV ! V as n!1:

Proof. Let V 2 H and let " > 0 be given. Since
1[
n=1

Hn is dense in H; there is an n0 and a

eV 2 Hn0 such that 


V � eV 



H
< ": Now, for n � n0; since PnV is the orthogonal projection

of V in Hn and since Hn0 � Hn; we have

kV � PnV kH �



V � bV 




H
8bV 2 Hn:

In particular,
kV � PnV kH �




V � eV 



H
< ":

Consider the discretized problem: Find Rn 2 Hn such thatD
SRn; bV E

H
=
D
T �u0f0;

bV E
H
8bV 2 Hn; (5)

where
S =

�

I + T �u0Tu0

�
;

or the �xed point version of it: Find Rn 2 Hn such thatD
FRn; bV E

H
=
D
Rn; bV E

H
8bV 2 Hn; (6)

with F de�ned as in Lemma 3. The operator equivalent of either (5) or (6) is�

In + PnT

�
u0
Tu0
�
Rn = PnT

�
u0
f0: (7)

It is easy to see that this "matrix equation" is solvable for each 
 > 0 and, for su¢ ciently
large 
; independent of n; the �xed point formulation (7) converges for any choice of the
initial guess R0n: We will proceed now to show that the sequence of solutions fRng

1
n=1 of

(7) converges strongly to the solution of (4). For this purpose, it su¢ ces to show that the
operators

Sn := PnSPn; n = 1; 2; � � � (8)

converge to the operator S in the discrete-stable sense (see [5]).
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Lemma 5 The operators Sn de�ned by (8) converge to S in the discrete-stable sense.

Proof. To show this we have to establish two things: (1) Sn ! S strongly, and (2)


SnbV 



H
�M




bV 



H
for all n su¢ ciently large and all bV 2 Hn: To establish (1), let V 2 H:

Since Pn converges strongly to I; PnV ! V: Since S is continuous, SPnV ! SV: Now

kSnV � SV kH = kPnSPnV � SV kH
� kPnSPnV � PnSV kH + kPnSV � SV kH
� kPnk kSPnV � SV kH + kPnSV � SV kH
= kSPnV � SV kH + kPnSV � SV kH

and the right hand side goes to zero as n goes to 1: To establish (2), let bV 2 Hn: ThenD
SnbV ; bV E

H
= 





bV 


2
H
+



Tu0 bV 


2

H

� 




bV 


2

H
:

Therefore, (2) follows with M := 
 independent of n:

Corollary 6 The solutions Rn; n = 1; 2; � � � of either (5) or (6) converge to the solution R
of (4) in the strong sense.

Proof. See [5].
In summary, we have shown that, for a �xed, su¢ ciently large n; the solution Rn of either

(5) or (6)is a good approximation of the solution R of (4) which can be obtained by solving
(5) or by �xed point iteration. In the numerical experiments of Section 4 we used a Krylov
Conjugate Gradient method (see [14]) to obtain a "approximate" solution of equation (5).

3 The restoration problem

Before considering the problem of restoration of an image from its blurred and noised version,
we need some preliminary results and notation. Denote the norm in H�1 (
) by k�k�1 :
H�1 (
) is a Hilbert space with the inner product de�ned by

hL;Mi =


r4�1L;r4�1M

�
:

The underlying space of images is taken to be the space BV (
) of functions of bounded
variation in the sense of measure. It is shown in [2] that BV (
) can be identi�ed with
those functions u 2 L1 (
) such that u has a weak gradient, denoted Du; which extends to
a continuous linear functional on C0 (
)

2 : If u 2 W 1;1 (
) then Du = ru: It is known that
BV (
) is compactly embedded in L1 (
) and continuously embedded in L2 (
) : On BV (
)
we de�ne the functional

J (u) =

Z



jDuj d
;
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i.e., the total variation of u 2 BV (
) : The problem of image restoration can be stated as

Minimize J (u) (9)

subject to Z



Rud
 =

Z
fd
; (10)

kRu� fk2�1 � �2 (11)

over all u 2 BV (
) such that Ru 2 H�1 (
) : It will be shown below that the above
minimization problem is equivalent to

Minimize E (u) := J (u) +
�

2
kRu� fk2�1 : (12)

Proposition 7 and its corollary generalize the results in [4] where the L2 (
) norm was used.
J can be regarded as a convex and lower semicontintuous function on L2 (
) ; (J (u) = +1
if u =2 BV (
)).
The following assumptions are made:

A1) R : H�1 (
)! H�1 (
) is a continuous linear operator.

A2) R1 = 1.

A3)


f � R f

�1 � �: See the discussion in [4].

Remark Observe that A1 is satis�ed, for example if R : L2 (
) ! L2 (
) is a bounded
linear operator since L2 (
) is densely and compactly embedded in H�1 (
). The
(continuous) adjoint operator R� is understood as a map from H�1 (
) into itself.

Proposition 7 Suppose f 2 R (BV (
)). If u 2 R (BV (
)) is a solution of (9) then there
exists a � � 0 such that

��R� (Ru� f) 2 @J (u) :
Here @J (u) � H�1 (
) is the subdi¤erential of J at u:

Proof. Set

G (u) = �B(f;�) (u) =

�
1; u 2 B (f; �)
1; u =2 B (f; �) ;

where B (f; �) is the closed ball in H�1 (
) centered at f with radius �: Problem (9) is
equivalent to

min J (u) +G (Ru) : (13)

It can be shown (see [4] or [8]) that , under the assumption f 2 R (BV (
));

@ (J +G �R) (u) = @J (u) + @ (G �R) (u)

and
@ (G �R) (u) = R�@G (Ru)
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with @G (u) = f0g if u 2 B (f; �) and, for u 2 @B (f; �) ;

@G (u) = f�F (u� f) : � � 0g ;

where F : H�1 (
)! (H�1 (
))
� is the duality mapping de�ned by

F (u) =
n
z 2

�
H�1 (
)

��
: kzk(H�1(
))� = kuk�1 ; hu; zi = kuk

2
�1

o
:

Such a mapping exists by the the Hahn-Banach Theorem (see [25]). Observe that F (u) = u
if (H�1 (
))

� is identi�ed with H�1 (
) itself or F (u) = 4�1u if (H�1 (
))
� is identi�ed

with H1
0 (
). In our case F (u) = u: Thus

@ (J +G �R) (u) = @J (u) +R�@G (Ru) :

If u is a solution of (13) then 0 2 @ (J +G �R) (u). Since any solution of (9) satis�es
kRu� fk�1 = � (a slight modi�cation of the argument in [4] pp 170), this shows that there
exists a � � 0 such that

0 2 @J (u) + �R� (Ru� f) :

Corollary 8 The minimization problem (9) is equivalent to the minimization problem (12)
for all � � 0.

Proof. By proposition 7, a minimizer u of (9) satis�es

0 2 @J (u) + �R� (Ru� f) :

Therefore, u minimizes (12). On the other hand, a minimizer u of (12) also minimizes (9)
with kRu� fk�1 = � (see [4] pp 170).
We show next that problem (9) has a "unique" minimizer. Our proof is partly motivated

by the argument in [17] pp 354.

Theorem 9 Assume that f 2 R (BV (
)): Then (9) has a solution u 2 BV (
) and Ru 2
H�1 (
) is unique.

Proof. Let fung be a minimizing sequence for (9) satisfying the constraints. Then J (un) �
M: From the generalized Poincaré inequality (see [26], Lemma 4.1.3)



un �

R


Rund


j
j






L1(
)

� CJ (un) ;

Since
R
Run =

R
f; 



un �

R


fd


j
j






L1(
)

�M:

We conclude that fung is bounded in L1 (
) and, consequently, in L2 (
) : Thus fung is
BV (
) bounded. Since BV (
) is compactly embedded in L1 (
) ; (a subsequence) un ! u
in L1 (
) and

J (un) � lim inf J (un) :
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Also Z



fd
 =

Z



Rund
 =

Z



Rud
:

On the other hand, sinceBV (
) is continuously embedded in L2 (
) ;(a subsequence) un * u
in L2 (
) : By the continuity and linearity of R we have Run * Ru in H�1 (
) : Therefore,

kf �Ruk�1 � lim inf kf �Runk�1 � �:

Hence, u is a solution of (9). It can also be shown that u satis�es kRu� fk2�1 = �2 (see [4]
page 170).
To show uniqueness, assume that u and v are solutions of (9), then

J

�
u+ v

2

�
� 1

2
(J (u) + J (v)) = min J

and Z



R
u+ v

2
d
 =

Z



fd
;



Ru+ v2 � f




2
�1

� �2:

Hence, u+v
2
is a solution of (9). Consequently,



Ru+ v2 � f





2
�1
= �2 = kRu� fk2�1 = kRv � fk

2
�1 :

By the strict convexity of k�k2�1 we conclude that Ru = Rv:
Following [17], the formal computation of the Euler-Lagrange equation for (12) yields

div
Du

jDuj = �4�1R� (Ru� f) ; (14)

@ div Du
jDuj

@n
j@
 = 0;

@u

@n
j@
 = 0 (15)

where @u
@n
is the outward normal derivative of u and, for v 2 R2;

jvj =
q
v21 + v

2
2:

To see how the derivative of kRu� fk2�1 is computed, we proceed as follows. Let

K (u) = kRu� fk2�1 :

Then, for h 2 C10 (
) ;

K (u+ th) = kRu� fk2�1 + 2t hRu� f;Rhi+ t2 kRhk
2
�1 :

10



Therefore,

d

dt
K (u+ th)jt=0 = 2 hRu� f;Rhi

= 2 hR� (Ru� f) ; hi
= 2



r4�1R� (Ru� f) ;r4�1h

�
= �2



4�1R� (Ru� f) ; h

�
:

This gives the right hand side of (14).
Equation (14) is solved by driving to steady state

ut = �
�
div Du

jDuj � �4
�1R� (Ru� f)

�
;

@ div Du
jDuj

@n
j@
 = 0; @u@n j@
 = 0;
u (0) = f:

(16)

To justify this procedure, we show that the energy E (u) in (12) decreases with time. The
pde (16) can be written as

ut = �E 0 (u) :
Now,

E : BV (
)! R) E 0 (u) 2 (BV (
))� � H�1 (
) 8u 2 BV (
) :
Thus, considering ut 2 H�1 (
) ; we have

d

dt
E (u) = hE 0 (u) ; uti

= �kE 0 (u)k2�1 :

4 Numerical Experiments

Experiment results with simulated blurred and noised images are described in this section.
The �xed point iteration technique described in Section 2 and Section 3 was used for
estimating the unknown parameters of the blur operator R. Since the technique is globally
convergent, we started with an initial guess ofR = 0:We also assumed the a priory knowledge
of a source image to compute the blur operator. The blur operator or PSF (point spread
function) representation of the blurring operator R was assumed to have a support region
of 30 � 11 pixels. The image in Fig. 1(b) was obtained by adding Gaussian noise with
zero mean and variance of 0:01. Fig. 1(c) shows the noisy-blurred picture. Restoration
was done using the technique described in Section 3. The initial estimation was selected to
be the blurred image. The calculation was terminated when the di¤erence between two
consecutive iterations was less than 1:0E � 4.

The restored image is shown in Fig. 1(d) and for comparison the original image is
included in Fig. 1(a). A general observation with this approach is that increased sharpness
in the restored image is traded with noise ampli�cation. As shown in Fig.1(d), the technique
enhances the quality of the picture by reducing the noise and removing the e¤ect of the blur
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(a) (b)

(d)(c)

Figure 1: Figure 1: (a) Original picture (b) Picture with added noise of mean zero and
variance .01 (c) blurred picture with added noise (d) Restored picture

while preserving the texture of the image. This simulation case con�rms the e¤ectiveness of
the technique in removing the blurring e¤ect and reducing the noise .
The value of the weighting factor � was traded between noise reduction and the sharpness

of the picture. The value of �, that gives a good visual picture, varies from one picture to
another. For this particular case, the picture shown was obtained for � = 200:See [17] for
more discussion on the choice of �:
Before performing the calculations the values of the pixels of the pictures were normalized

to the interval [0; 1]. This is why a large value weighting factor � was used.
The technique was also tested for various type of images. The simulation results shown

in Fig. 2 are for a colored image and in Fig.3 are for a �nger prints.

12



(a) (b)

(c) (d)

Figure 2: Figure 2: (a) Original picture (b) Picture with added noise of mean zero and
variance .01 (c) blurred picture with added noise (d) Restored picture
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(a) (b)

(c) (d)

Figure 3: Figure 3: (a) Original picture (b) Picture with added noise of mean zero and
variance .01 (c) blurred picture with added noise (d) Restored picture
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