Lemma F is lsc iff for any $c \in \mathbb{R}$, $\{u \in V : F(u) \leq c\}$ is closed.

Proof. Assume F is lsc. Let $c \in \mathbb{R}$, $K = \{u \in V : F(u) \leq c\}$ and $\overline{u} \in \overline{K}$. Take a net $\{u_{\gamma}\}_{\gamma \in \Gamma}$ such that $u_{\gamma} \to \overline{u}$. Then

$$F(u_{\gamma}) \leq c \ \forall \gamma \in \Gamma.$$

Taking the lim inf,

$$F(\overline{u}) \leq \lim_{u_{\gamma} \to \overline{u}} F(u_{\gamma}) \leq c$$
.

Therefore, $\overline{u} \in K$. On the other hand, suppose theat or any $c \in \mathbb{R}$, $\{u \in V : F(u) \leq c\}$ is closed. Let $\overline{u} \in V$ and let $\{u_{\gamma}\}_{\gamma \in \Gamma}$ be a net such that $u_{\gamma} \to \overline{u}$. Let $c = \lim_{u_{\gamma} \to \overline{u}} F(u_{\gamma})$. If $c \in \mathbb{R}$, then we can extract a subnet $\{u_{\gamma_n}\}$ of $\{u_{\gamma}\}_{\gamma \in \Gamma}$ such that $F(u_{\gamma_n}) \leq c + \frac{1}{n}$. Set $K_n = \{u \in V : F(u) \leq c + \frac{1}{n}\}$ and $K = \{u \in V : F(u) \leq c\}$. Then $K = \bigcap_{n=1}^{\infty} K_n$. Since $u_{\gamma_n} \to \overline{u}$ and $u_{\gamma_n} \in K_n$, $\overline{u} \in K$. Thus $F(\overline{u}) \leq c$. If $c = \infty$, there is nothing to prove. If $c = -\infty$, we can repeat the same argument with $K_n = \{u \in V : F(u) \leq -n\}$, $K = \{u \in V : F(u) = -\infty\}$.

<u>Cor 2.4</u> Suppose V is normed, $F: V \to \overline{\mathbb{R}}$ is proper and conves. TFAE (i) \exists an open set $\mathcal{O} \subseteq V$ on which F is bounded above. (ii) $\overbrace{\mathrm{dom} F}^{\circ} \neq \phi$ and F is locally Lipchitz there

Proof. We show only (i) \Rightarrow (ii). The fact that $\overrightarrow{\operatorname{dom} F} \neq \phi$ follows from Proposition 3.1. It follows also from the same proposition that F is continuous on $\overrightarrow{\operatorname{dom} F}$. Let $u \in \overrightarrow{\operatorname{dom} F}$. Since F is continuous at u. it is absolutely bounded, say by a in a ball $\overline{B(u,r)} \subset \overrightarrow{\operatorname{dom} F}$. Let $v \in B(u,r)$. Let w_1, w_2 be the two ends of the diagonal through u, v and suppose $v \in (u, w_1)$. Write $v = (1 - \lambda) u + \lambda w_1$. Then

$$\lambda = \frac{\|v - u\|}{\|w_1 - u\|} = \frac{\|v - u\|}{r}$$

$$F(v) - F(u) = F((1 - \lambda)u + \lambda w_1) - F(u)$$

$$\leq \lambda (F(w_1) - F(u)) = (F(w_1) - F(u)) \frac{\|v - u\|}{r}$$

$$\leq \frac{a - F(u)}{r} \|v - u\| \leq \frac{2a}{r} \|v - u\|.$$

Let v_1 be the point in B(u,r) which is diagonally opposite of v. Then $u = \frac{1}{2}(v+v_1)$ and

$$F(u) \le \frac{1}{2} (F(v) + F(v_1)).$$

Hence,

$$F(u) - F(v) \le F(v_1) - F(u).$$

Furthermore, $v_1 = (1 - \lambda) u + \lambda w_2$, where $\lambda = \frac{\|v_1 - u\|}{\|w_2 - u\|} = \frac{\|v - u\|}{r}$. This yields as before,

$$F(u) - F(v) \leq \lambda (F(w_2) - F(u)) \\ \leq \frac{a - F(u)}{r} ||v - u|| \leq \frac{2a}{r} ||v - u||.$$

Therefore,

$$|F(u) - F(v)| \le \frac{2a}{r} ||v - u||,$$

which proves the Lipschitz continuity at u. For arbitrary $u, v \in \overrightarrow{\text{dom } F}$, cover the segment [u, v] by a finite number of balls $\{B(u_i, r_i)\}_{i=1}^n$ and observe that $||v - u_i|| = c_i ||v - u||$. Then

$$|F(u) - F(v)| \le \sum_{i=1}^{n} \frac{2a_i}{r_i} ||v_i - u|| = \left(\sum_{i=1}^{n} \frac{2a_i}{r_i}c_i\right) ||v - u||.$$